Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Physiol Plant ; 172(3): 1550-1569, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33511661

RESUMEN

Natural variation of cyanogenic glycosides, soluble sugars, proline, and nondestructive optical sensing of pigments (chlorophyll, flavonols, and anthocyanins) was examined in ex situ natural populations of Eucalyptus cladocalyx F. Muell. grown under dry environmental conditions in the southern Atacama Desert, Chile. After 18 consecutive dry seasons, considerable plant-to-plant phenotypic variation for all the traits was observed in the field. For example, leaf hydrogen cyanide (HCN) concentrations varied from 0 (two acyanogenic individuals) to 1.54 mg cyanide g-1 DW. Subsequent genome-wide association study revealed associations with several genes with a known function in plants. HCN content was associated robustly with genes encoding Cytochrome P450 proteins, and with genes involved in the detoxification mechanism of HCN in cells (ß-cyanoalanine synthase and cyanoalanine nitrilase). Another important finding was that sugars, proline, and pigment content were linked to genes involved in transport, biosynthesis, and/or catabolism. Estimates of genomic heritability (based on haplotypes) ranged between 0.46 and 0.84 (HCN and proline content, respectively). Proline and soluble sugars had the highest predictive ability of genomic prediction models (PA = 0.65 and PA = 0.71, respectively). PA values for HCN content and flavonols were relatively moderate, with estimates ranging from 0.44 to 0.50. These findings provide new understanding on the genetic architecture of cyanogenic capacity, and other key complex traits in cyanogenic E. cladocalyx.


Asunto(s)
Eucalyptus , Antocianinas , Eucalyptus/genética , Estudio de Asociación del Genoma Completo , Glicósidos , Prolina , Estaciones del Año , Azúcares
2.
Physiol Plant ; 172(2): 820-846, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33159319

RESUMEN

Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.


Asunto(s)
Melatonina , Animales , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Plantas , Estrés Fisiológico
3.
Mol Biol Rep ; 48(4): 3877-3883, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893926

RESUMEN

Nothofagus alessandrii (Nothofagaceae) is one of the most endangered trees from Chile due to high rates of habitat disturbance caused by human activities. Despite its conservation status, few molecular markers are available to study its population genetic, connectivity and to assist reproduction programs. Thus, the species needs urgent actions to restore its original distribution. Novel polymorphic microsatellites from the genome of N. alessandrii were isolated and characterized using high-through sequencing. A total of 30 primer pairs were synthesized and 18 microsatellites were amplified correctly. Polymorphism and genetic diversity was evaluated in 58 individuals from three populations of N. alessandrii. Sixteen of them were polymorphic and the number of alleles in the pooled sample ranged from 2 to 14, the mean number of alleles was 4.81. The mean values of observed heterozigosity (HO) and excepted heterozygosity (HE) are similar in all studied populations. Linkage disequilibrium was found between a few pairs of loci (five out of 263 tests) suggesting that most of the markers can be considered as independent. Significant deviations from Hardy-Weinberg equilibrium (P < 0.05) were found in four loci probably due to low sampling size. Transferability to the congeneric N. pumilio was successful in only four out of the sixteen polymorphic markers. The microsatellite markers developed in this study will be useful to study the genetic diversity and structure and to develop integrated management plans for the conservation of this endangered species.


Asunto(s)
Especies en Peligro de Extinción , Fagales/genética , Repeticiones de Microsatélite , Polimorfismo Genético , Desequilibrio de Ligamiento
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638922

RESUMEN

Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.


Asunto(s)
Bosques , Edición Génica/métodos , Genoma de Planta/genética , Genómica/métodos , Fitomejoramiento/métodos , Selección Genética , Árboles/genética , Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo/métodos , Genotipo
5.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802953

RESUMEN

Soil salinity is one of the most limiting stresses for crop productivity and quality worldwide. In this sense, jasmonates (JAs) have emerged as phytohormones that play essential roles in mediating plant response to abiotic stresses, including salt stress. Here, we reviewed the mechanisms underlying the activation and response of the JA-biosynthesis and JA-signaling pathways under saline conditions in Arabidopsis and several crops. In this sense, molecular components of JA-signaling such as MYC2 transcription factor and JASMONATE ZIM-DOMAIN (JAZ) repressors are key players for the JA-associated response. Moreover, we review the antagonist and synergistic effects between JA and other hormones such as abscisic acid (ABA). From an applied point of view, several reports have shown that exogenous JA applications increase the antioxidant response in plants to alleviate salt stress. Finally, we discuss the latest advances in genomic techniques for the improvement of crop tolerance to salt stress with a focus on jasmonates.


Asunto(s)
Adaptación Fisiológica/genética , Ciclopentanos/metabolismo , Genómica , Oxilipinas/metabolismo , Plantas/genética , Estrés Salino/genética , Tolerancia a la Sal/genética
6.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070430

RESUMEN

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Asunto(s)
Agricultura/métodos , Sistemas CRISPR-Cas , Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta , Fitomejoramiento/métodos , Grano Comestible/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
7.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784649

RESUMEN

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist's mind, as it allows genome editing in multiple biological systems.


Asunto(s)
Productos Agrícolas/genética , Edición Génica/métodos , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Genoma de Planta , Fitomejoramiento
8.
Pharmaceutics ; 15(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36839670

RESUMEN

In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.

9.
Plants (Basel) ; 12(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771712

RESUMEN

Sulfate transporters (SULTRs) are responsible for the uptake of sulfate (SO42-) ions in the rhizosphere by roots and their distribution to plant organs. In this study, SULTR family members in the genomes of two oilseed crops (Camelina sativa and Brassica napus) were identified and characterized based on their sequence structures, duplication events, phylogenetic relationships, phosphorylation sites, and expression levels. In total, 36 and 45 putative SULTR genes were recognized in the genomes of C. sativa and B. napus, respectively. SULTR proteins were predicted to be basophilic proteins with low hydrophilicity in both studied species. According to the observed phylogenetic relationships, we divided the SULTRs into five groups, out of which the SULTR 3 group showed the highest variation. Additionally, several duplication events were observed between the SULTRs. The first duplication event occurred approximately five million years ago between three SULTR 3.1 genes in C. sativa. Furthermore, two subunits were identified in the 3D structures of the SULTRs, which demonstrated that the active binding sites differed between C. sativa and B. napus. According to the available RNA-seq data, the SULTRs showed diverse expression levels in tissues and diverse responses to stimuli. SULTR 3 was expressed in all tissues. SULTR 3.1 was more upregulated in response to abiotic stresses in C. sativa, while SULTR 3.3 and SULTR 2.1 were upregulated in B. napus. Furthermore, SULTR 3 and SULTR 4.1 were upregulated in response to biotic stresses in B. napus. Additionally, the qPCR data showed that the SULTRs in C. sativa were involved in the plant's response to salinity. Based on the distribution of cis-regulatory elements in the promoter region, we speculated that SULTRs might be controlled by phytohormones, such as ABA and MeJA. Therefore, it seems likely that SULTR genes in C. sativa have been more heavily influenced by evolutionary processes and have acquired further diversity. The results reveal new insights of the structures and functions of SULTRs in oilseed crops. However, further analyses, related to functional studies, are needed to uncover the role of SULTRs in the plants' development and growth processes, as well as in their response to stimuli.

10.
Plants (Basel) ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771526

RESUMEN

The global concern about the gap between food production and consumption has intensified the research on the genetics, ecophysiology, and breeding of cereal crops. In this sense, several genetic studies have been conducted to assess the effectiveness and sustainability of collections of germplasm accessions of major crops. In this study, a spectral-based classification approach for the assignment of wheat cultivars to genetically differentiated subpopulations (genetic structure) was carried out using a panel of 316 spring bread cultivars grown in two environments with different water regimes (rainfed and fully irrigated). For that, different machine-learning models were trained with foliar spectral and genetic information to assign the wheat cultivars to subpopulations. The results revealed that, in general, the hyperparameters ReLU (as the activation function), adam (as the optimizer), and a size batch of 10 give neural network models better accuracy. Genetically differentiated groups showed smaller differences in mean wavelengths under rainfed than under full irrigation, which coincided with a reduction in clustering accuracy in neural network models. The comparison of models indicated that the Convolutional Neural Network (CNN) was significantly more accurate in classifying individuals into their respective subpopulations, with 92 and 93% of correct individual assignments in water-limited and fully irrigated environments, respectively, whereas 92% (full irrigation) and 78% (rainfed) of cultivars were correctly assigned to their respective classes by the multilayer perceptron method and partial least squares discriminant analysis, respectively. Notably, CNN did not show significant differences between both environments, which indicates stability in the prediction independent of the different water regimes. It is concluded that foliar spectral variation can be used to accurately infer the belonging of a cultivar to its respective genetically differentiated group, even considering radically different environments, which is highly desirable in the context of crop genetic resources management.

11.
Front Plant Sci ; 14: 1153040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593046

RESUMEN

Maize (Zea mays L.), the third most widely cultivated cereal crop in the world, plays a critical role in global food security. To improve the efficiency of selecting superior genotypes in breeding programs, researchers have aimed to identify key genomic regions that impact agronomic traits. In this study, the performance of multi-trait, multi-environment deep learning models was compared to that of Bayesian models (Markov Chain Monte Carlo generalized linear mixed models (MCMCglmm), Bayesian Genomic Genotype-Environment Interaction (BGGE), and Bayesian Multi-Trait and Multi-Environment (BMTME)) in terms of the prediction accuracy of flowering-related traits (Anthesis-Silking Interval: ASI, Female Flowering: FF, and Male Flowering: MF). A tropical maize panel of 258 inbred lines from Brazil was evaluated in three sites (Cambira-2018, Sabaudia-2018, and Iguatemi-2020 and 2021) using approximately 290,000 single nucleotide polymorphisms (SNPs). The results demonstrated a 14.4% increase in prediction accuracy when employing multi-trait models compared to the use of a single trait in a single environment approach. The accuracy of predictions also improved by 6.4% when using a single trait in a multi-environment scheme compared to using multi-trait analysis. Additionally, deep learning models consistently outperformed Bayesian models in both single and multiple trait and environment approaches. A complementary genome-wide association study identified associations with 26 candidate genes related to flowering time traits, and 31 marker-trait associations were identified, accounting for 37%, 37%, and 22% of the phenotypic variation of ASI, FF and MF, respectively. In conclusion, our findings suggest that deep learning models have the potential to significantly improve the accuracy of predictions, regardless of the approach used and provide support for the efficacy of this method in genomic selection for flowering-related traits in tropical maize.

12.
Plants (Basel) ; 12(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37514348

RESUMEN

Tectona grandis Linn., also known as teak, is a highly valued species with adaptability to a wide range of climatic conditions and high tolerance to soil variations, making it an attractive option for both commercial and conservation purposes. In this sense, the classification of cultivated teak genotypes is crucial for both breeding programs and conservation efforts. This study examined the relationship between traits related to damage in the stem of teak plants caused by Ceratocystis fimbriata (a soil-borne pathogen that negatively impacts the productivity of teak plantations) and the spectral reflectance of 110 diverse clones, using near-infrared spectroscopy (NIRS) data and partial least squares regression (PLSR) analysis. Cross-validation models had R2 = 0.894 (ratio of standard error of prediction to standard deviation: RPD = 3.1), R2 = 0.883 (RPD = 2.7), and R2 = 0.893 (RPD = 2.8) for predicting stem lesion area, lesion length, and severity of infection, respectively. Teak genotypes (clones) can benefit from the creation of a calibration model utilizing NIRS-generated data paired with PLSR, which can effectively screen the magnitude of damage caused by the fungus. Overall, while the study provides valuable information for teak breeding and conservation efforts, a long-term perspective would be essential to evaluate the sustainability of teak genotypes over various growth stages and under continuous pathogen pressure.

13.
Plants (Basel) ; 12(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37299114

RESUMEN

Nitrogen is crucial for plant growth and development, and improving nitrogen use efficiency (NUE) is a viable strategy for reducing dependence on nitrogen inputs and promoting sustainability. While the benefits of heterosis in corn are well known, the physiological mechanisms underlying this phenomenon in popcorn are less understood. We aimed to investigate the effects of heterosis on growth and physiological traits in four popcorn lines and their hybrids under two contrasting nitrogen conditions. We evaluated morpho-agronomic and physiological traits such as leaf pigments, the maximum photochemical efficiency of PSII, and leaf gas exchange. Components associated with NUE were also evaluated. N deprivation caused reductions of up to 65% in terms of plant architecture, 37% in terms of leaf pigments, and 42% in terms of photosynthesis-related traits. Heterosis had significant effects on growth traits, NUE, and foliar pigments, particularly under low soil nitrogen conditions. N-utilization efficiency was found to be the mechanism favoring superior hybrid performance for NUE. Non-additive genetic effects were predominant in controlling the studied traits, indicating that exploring heterosis is the most effective strategy for obtaining superior hybrids to promote NUE. The findings are relevant and beneficial for agro farmers seeking sustainable agricultural practices and improved crop productivity through the optimization of nitrogen utilization.

14.
Front Plant Sci ; 13: 871943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432412

RESUMEN

Plants produce a wide diversity of specialized metabolites, which fulfill a wide range of biological functions, helping plants to interact with biotic and abiotic factors. In this study, an integrated approach based on high-throughput plant phenotyping, genome-wide haplotypes, and pedigree information was performed to examine the extent of heritable variation of foliar spectral reflectance and to predict the leaf hydrogen cyanide content in a genetically structured population of a cyanogenic eucalyptus (Eucalyptus cladocalyx F. Muell). In addition, the heritable variation (based on pedigree and genomic data) of more of 100 common spectral reflectance indices was examined. The first profile of heritable variation along the spectral reflectance curve indicated the highest estimate of genomic heritability ( h g 2 =0.41) within the visible region of the spectrum, suggesting that several physiological and biological responses of trees to environmental stimuli (ex., light) are under moderate genetic control. The spectral reflectance index with the highest genomic-based heritability was leaf rust disease severity index 1 ( h g 2 =0.58), followed by the anthocyanin reflectance index and the Browning reflectance index ( h g 2 =0.54). Among the Bayesian prediction models based on spectral reflectance data, Bayes B had a better goodness of fit than the Bayes-C and Bayesian ridge regression models (in terms of the deviance information criterion). All models that included spectral reflectance data outperformed conventional genomic prediction models in their predictive ability and goodness-of-fit measures. Finally, we confirmed the proposed hypothesis that high-throughput phenotyping indirectly capture endophenotypic variants related to specialized metabolites (defense chemistry), and therefore, generally more accurate predictions can be made integrating phenomics and genomics.

15.
Front Plant Sci ; 13: 897256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720562

RESUMEN

In many agricultural areas, crop production has decreased due to a lack of water availability, which is having a negative impact on sustainability and putting food security at risk. In plants, the plasticity of the root system architecture (RSA) is considered to be a key trait driving the modification of the growth and structure of roots in response to water deficits. The purpose of this study was to examine the plasticity of the RSA traits (mean root diameter, MRD; root volume, RV; root length, RL; and root surface area, SA) associated with drought tolerance in eight Lagenaria siceraria (Mol. Standl) genotypes, representing three different geographical origins: South Africa (BG-58, BG-78, and GC), Asia (Philippines and South Korea), and Chile (Illapel, Chepica, and Osorno). The RSA changes were evaluated at four substrate depths (from 0 to 40 cm). Bottle gourd genotypes were grown in 20 L capacity pots under two contrasting levels of irrigation (well-watered and water-deficit conditions). The results showed that the water productivity (WP) had a significant effect on plasticity values, with the Chilean accessions having the highest values. Furthermore, Illapel and Chepica genotypes presented the highest WP, MRD, and RV values under water-deficit conditions, in which MRD and RV were significant in the deeper layers (20-30 and 30-40 cm). Biplot analysis showed that the Illapel and Chepica genotypes presented a high WP, MRD, and RV, which confirmed that these may be promising drought-tolerant genotypes. Consequently, increased root diameter and volume in bottle gourd may constitute a response to a water deficit. The RSA traits studied here can be used as selection criteria in bottle gourd breeding programs under water-deficit conditions.

16.
Methods Mol Biol ; 2539: 135-157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895202

RESUMEN

Due to climate change and expected food shortage in the coming decades, not only will it be necessary to develop cultivars with greater tolerance to environmental stress, but it is also imperative to reduce breeding cycle time. In addition to yield evaluation, plant breeders resort to many sensory assessments and some others of intermediate complexity. However, to develop cultivars better adapted to current/future constraints, it is necessary to incorporate a new set of traits, such as morphophysiological and physicochemical attributes, information relevant to the successful selection of genotypes or parents. Unfortunately, because of the large number of genotypes to be screened, measurements with conventional equipment are unfeasible, especially under field conditions. High-throughput plant phenotyping (HTPP) facilitates collecting a significant amount of data quickly; however, it is necessary to transform all this information (e.g., plant reflectance) into helpful descriptors to the breeder. To the extent that a holistic characterization of the plant (phenomics) is performed in challenging environments, it will be possible to select the best genotypes (forward phenomics) objectively but also understand why the said individual differs from the rest (reverse phenomics). Unfortunately, several elements had prevented phenomics from developing as desired. Consequently, a new set of prediction/validation methodologies, seasonal ambient information, and the fusion of data matrices (e.g., genotypic and phenotypic information) need to be incorporated into the modeling. In this sense, for the massive implementation of phenomics in plant breeding, it will be essential to count an interdisciplinary team that responds to the urgent need to release material with greater capacity to tolerate environmental stress. Therefore, breeding programs should (i) be more efficient (e.g., early discarding of unsuitable material), (ii) have shorter breeding cycles (fewer crosses to achieve the desired cultivar), and (iii) be more productive, increasing the probability of success at the end of the breeding process (percentage of cultivars released to the number of initial crosses).


Asunto(s)
Fenómica , Fitomejoramiento , Genotipo , Fenotipo , Plantas/genética
18.
Front Plant Sci ; 13: 850567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251114

RESUMEN

It has been established that wheat (Triticum aestivum L.) has a higher Cd absorption capacity than other cereal crops causing an excess daily Cd intake and a huge threat for public health. Therefore, the reduction of Cd accumulation in wheat from the soil is a crucial food-security issue. A pot trial was performed on Cd-stressed wheat seedlings to evaluate the morphological and physio-biochemical responses via foliage spray of two different bio-stimulants, i.e., ascorbic acid (AsA) and moringa leaf extract (MLE). Two wheat cultivars (Fsd-08 and Glxy-13) were exposed to cadmium (CdCl2.5H2O) stress (0, 500, and 1,000 µM), along with foliar spray of AsA (0 and 50 mM) and MLE (0 and 3%). The most observable growth reduction was documented in plants that are exposed to a higher Cd concentration (1,000 µM), followed by the lower Cd level (500 µM). The wheat growth attributes, such as number of leaves per plant, number of tillers per plant, biomass yield, shoot/root length, and leaf area, were greatly depressed under the Cd stress, irrespective of the cultivar. Under the increasing Cd stress, a significant diminution was observed in maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) accompanied with reduced gas exchange attributes. However, Cd-induced phytotoxicity enhanced the non-photochemical quenching (NPQ) and internal carbon dioxide concentration (Ci), which was confirmed by their significant positive correlation with Cd contents in shoot and root tissues of both cultivars. The contents of proline, AsA, glycine betaine (GB), tocopherol, total free amino acid (TFAA), and total soluble sugar (TSS) were greatly decreased with Cd stress (1,000 µM), while MLE and AsA significantly enhanced the osmolytes accumulation under both Cd levels (especially 500 µM level). The Cd accumulation was predominantly found in the root as compared to shoots in both cultivars, which has declined after the application of MLE and AsA. Conclusively, MLE was found to be more effective to mitigate Cd-induced phytotoxicity up to 500 µM Cd concentration, compared with the AsA amendment.

19.
Saudi J Biol Sci ; 29(3): 1386-1393, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280589

RESUMEN

Elevated concentrations of salts in soil and water represent abiotic stresses. It considerably restricts plant productivity. However, the use of alpha-tocopherol (α-toc) as foliar can overcome this problem. It can improve crop productivity grown under salinity stress. Limited literature is documented regarding its optimum foliar application on sunflower. That's why the need for the time is to optimize α-toc foliar application rates for sunflower cultivated in salt-affected soil. A pot experiment was performed to select a better α-toc foliar application for mitigation of salt stress in different sunflower cultivars FH (572 and 621). There were 2 levels of salts, i.e., control (no salt stress) and sodium chloride (120 mM) and four α-toc foliar application (0, 100, 200, and 300 mg L-1). Results showed that foliar application of 100 mg/L- α-toc triggered the remarkable increase in fresh shoot weight, fresh root weight, shoot, and root lengths under salinity stress in FH-572 and FH-621 over 0 mg/L- α-toc. Foliar application of 200 mg/L- α-toc was most effective for improvement in chlorophyll a, chlorophyll b, total chlorophyll and carotenoids compared to 0 mg/L- α-toc. Furthermore, an increase in A was noted in FH-572 (17%) and FH-621 (22%) with α-toc (300 mg L-1) application under saline condition. In conclusion, the 100 and 200 mg/L- α-toc are the best application rates for the improvement in sunflower FH-572 and FH-621 growth, chlorophyll contents and gas exchange attributes. Further investigations are needed to select a better foliar application rate between 100 and 200 mg/L- α-toc at the field level under the different agro-climatic zone and soil types.

20.
Front Plant Sci ; 13: 986991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311131

RESUMEN

Copper (Cu2+) toxicity can inhibit plant growth and development. It has been shown that silicon (Si) can relieve Cu2+ stress. However, it is unclear how Si-nanoparticles (SiNPs) relieve Cu2+ stress in wheat seedlings. Therefore, the current study was conducted by setting up four treatments: CK, SiNP: (2.5 mM), Cu2+: (500 µM), and SiNP+Cu2+: (2.5 mM SiNP+500 µM Cu2+) to explore whether SiNPs can alleviate Cu2+ toxicity in wheat seedlings. The results showed that Cu2+ stress hampered root and shoot growth and accumulated high Cu2+ concentrations in roots (45.35 mg/kg) and shoots (25.70 mg/kg) of wheat as compared to control treatment. Moreover, Cu2+ treatment inhibited photosynthetic traits and chlorophyll contents as well as disturbed the antioxidant defense system by accumulating malondialdehyde (MDA) and hydrogen peroxidase (H2O2) contents. However, SiNPs treatment increased root length and shoot height by 15.1% and 22%, respectively, under Cu2+ toxicity. Moreover, SiNPs application decreased MDA and H2O2 contents by 31.25% and 19.25%, respectively. SiNPs increased non-enzymatic compounds such as ascorbic acid-glutathione (AsA-GSH) and enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbic peroxidase (APX) activities by 77.5%, 141.7%, 68%, and 80%, respectively. Furthermore, SiNPs decreased Cu2+ concentrations in shoots by 26.2%, as compared to Cu2+ treatment alone. The results concluded that SiNPs could alleviate Cu2+ stress in wheat seedlings. The present investigation may help to increase wheat production in Cu2+ contaminated soils.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda