Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
JCO Clin Cancer Inform ; 8: e2300118, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181324

RESUMEN

PURPOSE: Limitations from commercial software applications prevent the implementation of a robust and cost-efficient high-throughput cancer imaging radiomic feature extraction and perfusion analysis workflow. This study aimed to develop and validate a cancer research computational solution using open-source software for vendor- and sequence-neutral high-throughput image processing and feature extraction. METHODS: The Cancer Radiomic and Perfusion Imaging (CARPI) automated framework is a Python-based software application that is vendor- and sequence-neutral. CARPI uses contour files generated using an application of the user's choice and performs automated radiomic feature extraction and perfusion analysis. This workflow solution was validated using two clinical data sets, one consisted of 40 pelvic chondrosarcomas and 42 sacral chordomas with a total of 82 patients, and a second data set consisted of 26 patients with undifferentiated pleomorphic sarcoma (UPS) imaged at multiple points during presurgical treatment. RESULTS: Three hundred sixteen volumetric contour files were processed using CARPI. The application automatically extracted 107 radiomic features from multiple magnetic resonance imaging sequences and seven semiquantitative perfusion parameters from time-intensity curves. Statistically significant differences (P < .00047) were found in 18 of 107 radiomic features in chordoma versus chondrosarcoma, including six first-order and 12 high-order features. In UPS postradiation, the apparent diffusion coefficient mean increased 41% in good responders (P = .0017), while firstorder_10Percentile (P = .0312) was statistically significant between good and partial/nonresponders. CONCLUSION: The CARPI processing of two clinical validation data sets confirmed the software application's ability to differentiate between different types of tumors and help predict patient response to treatment on the basis of radiomic features. Benchmark comparison with five similar open-source solutions demonstrated the advantages of CARPI in the automated perfusion feature extraction, relational database generation, and graphic report export features, although lacking a user-friendly graphical user interface and predictive model building.


Asunto(s)
Neoplasias , Radiómica , Humanos , Benchmarking , Bases de Datos Factuales , Procesamiento de Imagen Asistido por Computador
2.
JCO Precis Oncol ; 7: e2300243, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38127828

RESUMEN

PURPOSE: Chondrosarcomas arise from the lateral pelvis; however, midline chondrosarcomas (10%) display similar imaging features to chordoma, causing a diagnostic challenge. This study aims to determine the diagnostic accuracy of apparent diffusion coefficient (ADC)-based radiomic features and two novel diffusion indices for differentiating sacral chordomas and chondrosarcomas. METHODS: A retrospective, multireader review was performed of 82 pelvic MRIs (42 chordomas and 40 chondrosarcomas) between December 2014 and September 2021, split into training (n = 69) and validation (n = 13) data sets. Lesions were segmented on a single slice from ADC maps. Eight first-order features (minimum, mean, median, and maximum ADC, standard deviation, skewness, kurtosis, and entropy) and two novel indices: restriction index (RI, proportion of lesions with restricted diffusion) and facilitation index (FI, proportion of lesions with facilitated diffusion) were estimated. One hundred seven radiomic features comparing patients with chondrosarcoma versus chordoma were sorted based on mean group differences. RESULTS: There was good to excellent interobserver reliability for eight of the 10 ADC metrics on the training data set. Significant differences were observed (P < .005) for RI, FI, median, mean, and skewness using the training data set. Optimal cutpoints for diagnosis of chordoma were RI > 0.015; FI < 0.25; mean ADC < 1.7 × 10-3 mm2/s; and skewness >0.177. The optimal decision tree relied on FI. In a secondary analysis, significant differences (P < .00047) in chondrosarcoma versus chordoma were found in 18 of 107 radiomic features, including six first-order and 12 high-order features. CONCLUSION: The novel ADC index, FI, in addition to ADC mean, skewness, and 12 high-order radiomic features, could help differentiate sacral chordomas from chondrosarcomas.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Cordoma , Humanos , Cordoma/diagnóstico por imagen , Cordoma/patología , Estudios Retrospectivos , Reproducibilidad de los Resultados , Radiómica , Condrosarcoma/diagnóstico por imagen , Condrosarcoma/patología , Neoplasias Óseas/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda