RESUMEN
Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.
Asunto(s)
Trastorno del Espectro Autista/microbiología , Síntomas Conductuales/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Bacterias , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Microbiota , Factores de RiesgoRESUMEN
SCF (Skp1-Cullin-F-box) ubiquitin ligases comprise several dozen modular enzymes that have diverse roles in biological regulation. SCF enzymes share a common catalytic core containing Cul1â Rbx1, which is directed toward different substrates by a variable substrate receptor (SR) module comprising 1 of 69 F-box proteins bound to Skp1. Despite the broad cellular impact of SCF enzymes, important questions remain about the architecture and regulation of the SCF repertoire, including whether SRs compete for Cul1 and, if so, how this competition is managed. Here, we devise methods that preserve the in vivo assemblages of SCF complexes and apply quantitative mass spectrometry to perform a census of these complexes (the "SCFome") in various states. We show that Nedd8 conjugation and the SR exchange factor Cand1 have a profound effect on shaping the SCFome. Together, these factors enable rapid remodeling of SCF complexes to promote biased assembly of SR modules bound to substrate.
Asunto(s)
Proteínas Ligasas SKP Cullina F-box/química , Proteínas Portadoras/metabolismo , Línea Celular , Cromatografía de Afinidad , Proteínas Cullin/metabolismo , Humanos , Espectrometría de Masas , Proteína NEDD8/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismoRESUMEN
The assembly of nascent proteins into multi-subunit complexes is a tightly regulated process that must occur at high fidelity to maintain cellular homeostasis. The ER membrane protein complex (EMC) is an essential insertase that requires seven membrane-spanning and two soluble cytosolic subunits to function. Here, we show that the kinase with no lysine 1 (WNK1), known for its role in hypertension and neuropathy, functions as an assembly factor for the human EMC. WNK1 uses a conserved amphipathic helix to stabilize the soluble subunit, EMC2, by binding to the EMC2-8 interface. Shielding this hydrophobic surface prevents promiscuous interactions of unassembled EMC2 and directly competes for binding of E3 ubiquitin ligases, permitting assembly. Depletion of WNK1 thus destabilizes both the EMC and its membrane protein clients. This work describes an unexpected role for WNK1 in protein biogenesis and defines the general requirements of an assembly factor that will apply across the proteome.
Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Retículo Endoplásmico/genética , Células HeLa , Humanos , Complejos Multiproteicos/genética , Proteína Quinasa Deficiente en Lisina WNK 1/genéticaRESUMEN
Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes. Using PIKES, we show that ligase assemblies of Cullin4 with individual substrate receptors differ in abundance by up to 200-fold and that Cand1/2 act as substrate receptor exchange factors. Furthermore, degrader molecules can induce the assembly of their cognate CRL4, and higher expression of the associated substrate receptor enhances degrader potency. Beyond the CRL4 network, we show how PIKES can reveal systems level biochemistry for cellular protein networks important to drug development.
Asunto(s)
Cromatografía Líquida de Alta Presión , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Mapas de Interacción de Proteínas , Proteolisis , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Intron retention (IR) has emerged as an important mechanism of gene expression control, but the factors controlling IR events remain poorly understood. We observed consistent IR in one intron of the Irf7 gene and identified BUD13 as an RNA-binding protein that acts at this intron to increase the amount of successful splicing. Deficiency in BUD13 was associated with increased IR, decreased mature Irf7 transcript and protein levels, and consequently a dampened type I interferon response, which compromised the ability of BUD13-deficient macrophages to withstand vesicular stomatitis virus (VSV) infection. Global analysis of BUD13 knockdown and BUD13 cross-linking to RNA revealed a subset of introns that share many characteristics with the one found in Irf7 and are spliced in a BUD13-dependent manner. Deficiency of BUD13 led to decreased mature transcript from genes containing such introns. Thus, by acting as an antagonist to IR, BUD13 facilitates the expression of genes at which IR occurs.
Asunto(s)
Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Intrones , Macrófagos/metabolismo , Proteínas de Unión al ARN/metabolismo , Estomatitis Vesicular/metabolismo , Virus de la Estomatitis Vesicular Indiana/patogenicidad , Animales , Sitios de Unión , Chlorocebus aethiops , Secuencia Rica en GC , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Factor 7 Regulador del Interferón/genética , Interferón Tipo I/inmunología , Macrófagos/inmunología , Macrófagos/virología , Ratones Endogámicos C57BL , Unión Proteica , Sitios de Empalme de ARN , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Células Vero , Estomatitis Vesicular/genética , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/inmunologíaRESUMEN
This Technical Note presents a comprehensive proteomics workflow for the new combination of Orbitrap and Astral mass analyzers across biofluids, cells, and tissues. Central to our workflow is the integration of Adaptive Focused Acoustics (AFA) technology for cells and tissue lysis to ensure robust and reproducible sample preparation in a high-throughput manner. Furthermore, we automated the detergent-compatible single-pot, solid-phase-enhanced sample Preparation (SP3) method for protein digestion. The synergy of these advanced methodologies facilitates a robust and high-throughput approach for cell and tissue analysis, an important consideration in translational research. This work disseminates our platform workflow, analyzes the effectiveness, demonstrates the reproducibility of the results, and highlights the potential of these technologies in biomarker discovery and disease pathology. For cells and tissues (heart, liver, lung, and intestine) proteomics analysis by data-independent acquisition mode, identifications exceeding 10,000 proteins can be achieved with a 24 min active gradient. In 200 ng injections of HeLa digest across multiple gradients, an average of more than 80% of proteins have a CV less than 20%, and a 45 min run covers â¼90% of the expressed proteome. This complete workflow allows for large swaths of the proteome to be identified and is compatible with diverse sample types.
Asunto(s)
Proteómica , Proteómica/métodos , Humanos , Células HeLa , Reproducibilidad de los Resultados , Flujo de Trabajo , Proteoma/análisis , Líquidos Corporales/química , Ensayos Analíticos de Alto Rendimiento/métodos , Biomarcadores/análisis , Hígado/metabolismo , Pulmón/metabolismo , Pulmón/químicaRESUMEN
BACKGROUND: The enhanced precision and selectivity of liquid chromatography-tandem mass spectrometry (LC-MS/MS) makes it an attractive alternative to certain clinical immunoassays. Easily transferrable work flows could help facilitate harmonization and ensure high-quality patient care. We aimed to evaluate the interlaboratory comparability of antibody-free multiplexed insulin and C-peptide LC-MS/MS measurements. METHODS: The laboratories that comprise the Targeted Mass Spectrometry Assays for Diabetes and Obesity Research (TaMADOR) consortium verified the performance of a validated peptide-based assay (reproducibility, linearity, and lower limit of the measuring interval [LLMI]). An interlaboratory comparison study was then performed using shared calibrators, de-identified leftover laboratory samples, and reference materials. RESULTS: During verification, the measurements were precise (2.7% to 3.7%CV), linear (4 to 15â ng/mL for C-peptide and 2 to 14â ng/mL for insulin), and sensitive (LLMI of 0.04 to 0.10â ng/mL for C-peptide and 0.03â ng/mL for insulin). Median imprecision across the 3 laboratories was 13.4% (inter-quartile range [IQR] 11.6%) for C-peptide and 22.2% (IQR 20.9%) for insulin using individual measurements, and 10.8% (IQR 8.7%) and 15.3% (IQR 14.9%) for C-peptide and insulin, respectively, when replicate measurements were averaged. Method comparison with the University of Missouri reference method for C-peptide demonstrated a robust linear correlation with a slope of 1.044 and r2 = 0.99. CONCLUSIONS: Our results suggest that combined LC-MS/MS measurements of C-peptide and insulin are robust and adaptable and that standardization with a reference measurement procedure could allow accurate and precise measurements across sites, which could be important to diabetes research and help patient care in the future.
Asunto(s)
Péptido C , Insulina , Espectrometría de Masas en Tándem , Péptido C/sangre , Péptido C/análisis , Humanos , Espectrometría de Masas en Tándem/métodos , Insulina/análisis , Insulina/sangre , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Laboratorios/normas , Cromatografía Líquida con Espectrometría de MasasRESUMEN
Telehealth, accessing healthcare and wellness remotely, should be a cost-effective and efficient way for individuals to receive care. The convenience of having a reliable remote collection device for blood tests will facilitate access to precision medicine and healthcare. Herein, we tested a 60-biomarker health surveillance panel (HSP), containing 35 FDA/LDT assays and covering at least 14 pathological states, on 8 healthy individuals' ability to collect their own capillary blood from a lancet finger prick and directly compared it to the traditional phlebotomist venous blood and plasma collection methods. All samples were spiked with 114 stable-isotope-labeled (SIL) HSP peptides and quantitatively analyzed by liquid chromatography-multiple reaction monitoring-mass spectrometry (LC/MRM-MS) scheduled method targeting 466 transitions from 114 HSP peptides and by a discovery data-independent acquisition mass spectrometry (DIA-MS) method. The average peak area ratio (PAR) of the HSP quantifier peptide transitions from all 8 volunteers' capillary blood (n = 48), venous blood (n = 48), and matched plasma (n = 24) was <20% coefficients of variation (CV). Heat map analysis of all 8 volunteers demonstrated that each individual had a unique biosignature. Biological replicates from capillary blood and venous blood clustered within each volunteer in k-means clustering analysis. Pearson statistical analysis of the three biofluids indicated that there was >90% similarity. Discovery DIA-MS analysis of the same samples using a plasma spectral library and a pan-human spectral library identified 1121 and 4661 total proteins, respectively. In addition, at least 122 FDA-approved biomarkers were identified. DIA-MS analysis reproducibly quantitated (<30% CV) â¼600-700 proteins in capillary blood, â¼800 proteins in venous blood, and â¼300-400 proteins in plasma, demonstrating that an expansive biomarker panel is possible with current mass spectrometry technology. Both targeted LC/MRM-MS and discovery DIA-MS analysis of whole blood collected on remote sampling devices are viable options for personal proteome biosignature stratification in precision medicine and precision health.
Asunto(s)
Recolección de Muestras de Sangre , Péptidos , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Péptidos/química , BiomarcadoresRESUMEN
BACKGROUND: Accurate discovery assay workflows are critical for identifying authentic circulating protein biomarkers in diverse blood matrices. Maximizing the commonalities in the proteomic workflows between different biofluids simplifies the approach and increases the likelihood for reproducibility. We developed a workflow that can accommodate 3 blood-based proteomes: naive plasma, depleted plasma and dried blood. METHODS: Optimal conditions for sample preparation and data independent acquisition-mass spectrometry analysis were established in plasma then automated for depleted plasma and dried blood. The mass spectrometry workflow was modified to facilitate sensitive high-throughput analysis or deeper profiling with mid-throughput analysis. Analytical performance was evaluated by the linear response of peptides and proteins to a 6- or 7-point dilution curve and the reproducibility of the relative peptide and protein intensity for 5 digestion replicates per day on 3 different days for each biofluid. RESULTS: Using the high-throughput workflow, 74% (plasma), 93% (depleted), and 87% (dried blood) displayed an inter-day CV <30%. The mid-throughput workflow had 67% (plasma), 90% (depleted), and 78% (dried blood) of peptides display an inter-day CV <30%. Lower limits of detection and quantification were determined for peptides and proteins observed in each biofluid and workflow. Based on each protein and peptide's analytical performance, we could describe the observable, reliable, reproducible, and quantifiable proteomes for each biofluid and workflow. CONCLUSION: The standardized workflows established here allows for reproducible and quantifiable detection of proteins covering a broad dynamic range. We envisage that implementation of this standard workflow should simplify discovery approaches and facilitate the translation of candidate markers into clinical use.
Asunto(s)
Sangre , Proteómica , Flujo de Trabajo , Biomarcadores/sangre , Humanos , Péptidos , Proteómica/métodos , Reproducibilidad de los ResultadosRESUMEN
Many long non-coding RNAs (lncRNAs) affect gene expression, but the mechanisms by which they act are still largely unknown. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X chromosome during development in female mammals. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional silencing, we still do not know any proteins required for this role. The main challenge is that there are currently no methods to comprehensively define the proteins that directly interact with a lncRNA in the cell. Here we develop a method to purify a lncRNA from cells and identify proteins interacting with it directly using quantitative mass spectrometry. We identify ten proteins that specifically associate with Xist, three of these proteins--SHARP, SAF-A and LBR--are required for Xist-mediated transcriptional silencing. We show that SHARP, which interacts with the SMRT co-repressor that activates HDAC3, is not only essential for silencing, but is also required for the exclusion of RNA polymerase II (Pol II) from the inactive X. Both SMRT and HDAC3 are also required for silencing and Pol II exclusion. In addition to silencing transcription, SHARP and HDAC3 are required for Xist-mediated recruitment of the polycomb repressive complex 2 (PRC2) across the X chromosome. Our results suggest that Xist silences transcription by directly interacting with SHARP, recruiting SMRT, activating HDAC3, and deacetylating histones to exclude Pol II across the X chromosome.
Asunto(s)
Silenciador del Gen , Histona Desacetilasas/metabolismo , Espectrometría de Masas/métodos , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Transcripción Genética/genética , Cromosoma X/genética , Acetilación , Animales , Línea Celular , Proteínas de Unión al ADN , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Femenino , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Histonas/metabolismo , Masculino , Ratones , Co-Represor 2 de Receptor Nuclear/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Cromosoma X/metabolismo , Inactivación del Cromosoma X/genética , Receptor de Lamina BRESUMEN
Gene regulation is one of the most ubiquitous processes in biology. However, while the catalog of bacterial genomes continues to expand rapidly, we remain ignorant about how almost all of the genes in these genomes are regulated. At present, characterizing the molecular mechanisms by which individual regulatory sequences operate requires focused efforts using low-throughput methods. Here, we take a first step toward multipromoter dissection and show how a combination of massively parallel reporter assays, mass spectrometry, and information-theoretic modeling can be used to dissect multiple bacterial promoters in a systematic way. We show this approach on both well-studied and previously uncharacterized promoters in the enteric bacterium Escherichia coli In all cases, we recover nucleotide-resolution models of promoter mechanism. For some promoters, including previously unannotated ones, the approach allowed us to further extract quantitative biophysical models describing input-output relationships. Given the generality of the approach presented here, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in E. coli and a wide range of other bacteria.
Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Activación TranscripcionalRESUMEN
Though most bacteria in nature are nutritionally limited and grow slowly, our understanding of core processes like transcription comes largely from studies in model organisms doubling rapidly. We previously identified a small protein of unknown function, SutA, in a screen of proteins synthesized in Pseudomonas aeruginosa during dormancy. SutA binds RNA polymerase (RNAP), causing widespread changes in gene expression, including upregulation of the ribosomal RNA genes. Here, using biochemical and structural methods, we examine how SutA interacts with RNAP and the functional consequences of these interactions. We show that SutA comprises a central α-helix with unstructured N- and C-terminal tails, and binds to the ß1 domain of RNAP. It activates transcription from the rrn promoter by both the housekeeping sigma factor holoenzyme (Eσ70 ) and the stress sigma factor holoenzyme (EσS ) in vitro, but has a greater impact on EσS . In both cases, SutA appears to affect intermediates in the open complex formation and its N-terminal tail is required for activation. The small magnitudes of in vitro effects are consistent with a role in maintaining activity required for homeostasis during dormancy. Our results add SutA to a growing list of transcription regulators that use their intrinsically disordered regions to remodel transcription complexes.
Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/crecimiento & desarrollo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Activación TranscripcionalRESUMEN
The stable isotopes of sulfate, nitrate, and phosphate are frequently used to study geobiological processes of the atmosphere, ocean, as well as land. Conventionally, the isotopes of these and other oxyanions are measured by isotope-ratio sector mass spectrometers after conversion into gases. Such methods are prone to various limitations on sensitivity, sample throughput, or precision. In addition, there is no general tool that can analyze several oxyanions or all the chemical elements they contain. Here, we describe a new approach that can potentially overcome some of these limitations based on electrospray hyphenated with Quadrupole Orbitrap mass spectrometry. This technique yields an average accuracy of 1-2 for sulfate δ34S and δ18O and nitrate δ15N and δ18O, based on in-house and international standards. Less abundant variants such as δ17O, δ33S, and δ36S, and the 34S-18O "clumped" sulfate can be quantified simultaneously. The observed precision of isotope ratios is limited by the number of ions counted. The counting of rare ions can be accelerated by removing abundant ions with the quadrupole mass filter. Electrospray mass spectrometry (ESMS) exhibits high-throughput and sufficient sensitivity. For example, less than 1 nmol sulfate is required to determine 18O/34S ratios with 0.2 precision within minutes. A purification step is recommended for environmental samples as our proposed technique is susceptible to matrix effects. Building upon these initial provisions, new features of the isotopic anatomy of mineral ions can now be explored with ESMS instruments that are increasingly available to bioanalytical laboratories.
Asunto(s)
Oxígeno/análisis , Aniones/análisis , Isótopos de Nitrógeno , Isótopos de Oxígeno , Espectrometría de Masa por Ionización de Electrospray , Isótopos de AzufreRESUMEN
Data-independent acquisition (DIA) is a powerful mass spectrometric technique to perform both protein identification and quantification of complex protein samples. Setting up DIA methods on Orbitrap analyzers requires a thorough overview of the actions the Orbitrap mass spectrometers carry out. This Tutorial is written with the intention to give an overview of the important parameters to consider as well as which measurements to carry out to get the most out of your DIA method when setting it up on an Orbitrap mass analyzer. Instead of giving the optimal DIA settings, all steps in the construction and optimization of the DIA method are shown and discussed in a way that allows tailored DIA methods. They key steps are building the spectral library after sample fractionation, deciding upon the number of data points per chromatographic peak, determining the scan times of each mass spectrometric step, constructing various DIA methods using these data, and evaluating their performance. This proposed DIA method development strategy was tested on digested lysates from Pseudomonas aeruginosa and compared with conventional DDA analysis to put the DIA results into perspective.
Asunto(s)
Espectrometría de Masas/métodos , Proteínas/análisis , Proteómica/métodos , Proteínas Bacterianas/análisis , Espectrometría de Masas/instrumentación , Métodos , Proteómica/instrumentación , Pseudomonas aeruginosa/químicaRESUMEN
Integral membrane proteins are prone to aggregation and misfolding in aqueous environments and therefore require binding by molecular chaperones during their biogenesis. Chloroplast signal recognition particle 43 (cpSRP43) is an ATP-independent chaperone required for the biogenesis of the most abundant class of membrane proteins, the light-harvesting chlorophyll a/b-binding proteins (LHCPs). Previous work has shown that cpSRP43 specifically recognizes an L18 loop sequence conserved among LHCP paralogs. However, how cpSRP43 protects the transmembrane domains (TMDs) of LHCP from aggregation was unclear. In this work, alkylation-protection and site-specific cross-linking experiments found that cpSRP43 makes extensive contacts with all the TMDs in LHCP. Site-directed mutagenesis identified a class of cpSRP43 mutants that bind tightly to the L18 sequence but are defective in chaperoning full-length LHCP. These mutations mapped to hydrophobic surfaces on or near the bridging helix and the ß-hairpins lining the ankyrin repeat motifs of cpSRP43, suggesting that these regions are potential sites for interaction with the client TMDs. Our results suggest a working model for client protein interactions in this membrane protein chaperone.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Mapas de Interacción de Proteínas , Partícula de Reconocimiento de Señal/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Unión a Clorofila/química , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Mutación Puntual , Agregado de Proteínas , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genéticaRESUMEN
Microbial quiescence and slow growth are ubiquitous physiological states, but their study is complicated by low levels of metabolic activity. To address this issue, we used a time-selective proteome-labeling method [bioorthogonal noncanonical amino acid tagging (BONCAT)] to identify proteins synthesized preferentially, but at extremely low rates, under anaerobic survival conditions by the opportunistic pathogen Pseudomonas aeruginosa. One of these proteins is a transcriptional regulator that has no homology to any characterized protein domains and is posttranscriptionally up-regulated during survival and slow growth. This small, acidic protein associates with RNA polymerase, and chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing suggests that the protein associates with genomic DNA through this interaction. ChIP signal is found both in promoter regions and throughout the coding sequences of many genes and is particularly enriched at ribosomal protein genes and in the promoter regions of rRNA genes. Deletion of the gene encoding this protein affects expression of these and many other genes and impacts biofilm formation, secondary metabolite production, and fitness in fluctuating conditions. On the basis of these observations, we have designated the protein SutA (survival under transitions A).
Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Anaerobiosis , Biopelículas , ARN Polimerasas Dirigidas por ADN/metabolismo , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Procesamiento Postranscripcional del ARN , Ribosomas/genética , Transcripción Genética , Regulación hacia ArribaRESUMEN
Here we characterize the [Fe4S4] cluster nitrosylation of a DNA repair enzyme, endonuclease III (EndoIII), using DNA-modified gold electrochemistry and protein film voltammetry, electrophoretic mobility shift assays, mass spectrometry of whole and trypsin-digested protein, and a variety of spectroscopies. Exposure of EndoIII to nitric oxide under anaerobic conditions transforms the [Fe4S4] cluster into a dinitrosyl iron complex, [(Cys)2Fe(NO)2]-, and Roussin's red ester, [(µ-Cys)2Fe2(NO)4], in a 1:1 ratio with an average retention of 3.05 ± 0.01 Fe per nitrosylated cluster. The formation of the dinitrosyl iron complex is consistent with previous reports, but the Roussin's red ester is an unreported product of EndoIII nitrosylation. Hyperfine sublevel correlation (HYSCORE) pulse EPR spectroscopy detects two distinct classes of NO with 14N hyperfine couplings consistent with the dinitrosyl iron complex and reduced Roussin's red ester. Whole-protein mass spectrometry of EndoIII nitrosylated with 14NO and 15NO support the assignment of a protein-bound [(µ-Cys)2Fe2(NO)4] Roussin's red ester. The [Fe4S4]2+/3+ redox couple of DNA-bound EndoIII is observable using DNA-modified gold electrochemistry, but nitrosylated EndoIII does not display observable redox activity using DNA electrochemistry on gold despite having a similar DNA-binding affinity as the native protein. However, direct electrochemistry of protein films on graphite reveals the reduction potential of native and nitrosylated EndoIII to be 127 ± 6 and -674 ± 8 mV vs NHE, respectively, corresponding to a shift of approximately -800 mV with cluster nitrosylation. Collectively, these data demonstrate that DNA-bound redox activity, and by extension DNA-mediated charge transport, is modulated by [Fe4S4] cluster nitrosylation.
Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/metabolismo , Compuestos Nitrosos/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/biosíntesis , Desoxirribonucleasa (Dímero de Pirimidina)/aislamiento & purificación , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/aislamiento & purificación , Hierro/química , Estructura Molecular , Óxidos de Nitrógeno/química , Compuestos Nitrosos/química , Oxidación-ReducciónRESUMEN
While the collective impact of marine viruses has become more apparent over the last decade, a deeper understanding of virus-host dynamics and the role of viruses in nutrient cycling would benefit from direct observations at the single-virus level. We describe two new complementary approaches - stable isotope probing coupled with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence-based biorthogonal non-canonical amino acid tagging (BONCAT) - for studying the activity and biogeochemical influence of marine viruses. These tools were developed and tested using several ecologically relevant model systems (Emiliania huxleyi/EhV207, Synechococcus sp. WH8101/Syn1 and Escherichia coli/T7). By resolving carbon and nitrogen enrichment in viral particles, we demonstrate the power of nanoSIMS tracer experiments in obtaining quantitative estimates for the total number of viruses produced directly from a particular production pathway (by isotopically labelling host substrates). Additionally, we show through laboratory experiments and a pilot field study that BONCAT can be used to directly quantify viral production (via epifluorescence microscopy) with minor sample manipulation and no dependency on conversion factors. This technique can also be used to detect newly synthesized viral proteins. Together these tools will help fill critical gaps in our understanding of the biogeochemical impact of viruses in the ocean.
Asunto(s)
Interacciones Microbiota-Huesped , Marcaje Isotópico , Espectrometría de Masa de Ion Secundario , Virus , Microbiología del Agua , Aminoácidos/análisis , Fluorescencia , Haptophyta , Synechococcus , Fenómenos Fisiológicos de los VirusRESUMEN
Proteomic plasticity undergirds stress responses in plants, and understanding such responses requires accurate measurement of the extent to which proteins levels are adjusted to counter external stimuli. Here, we adapt bioorthogonal noncanonical amino acid tagging (BONCAT) to interrogate protein synthesis in vegetative Arabidopsis (Arabidopsis thaliana) seedlings. BONCAT relies on the translational incorporation of a noncanonical amino acid probe into cellular proteins. In this study, the probe is the Met surrogate azidohomoalanine (Aha), which carries a reactive azide moiety in its amino acid side chain. The azide handle in Aha can be selectively conjugated to dyes and functionalized beads to enable visualization and enrichment of newly synthesized proteins. We show that BONCAT is sensitive enough to detect Arabidopsis proteins synthesized within a 30-min interval defined by an Aha pulse and that the method can be used to detect proteins made under conditions of light stress, osmotic shock, salt stress, heat stress, and recovery from heat stress. We further establish that BONCAT can be coupled to tandem liquid chromatography-mass spectrometry to identify and quantify proteins synthesized during heat stress and recovery from heat stress. Our results are consistent with a model in which, upon the onset of heat stress, translation is rapidly reprogrammed to enhance the synthesis of stress mitigators and is again altered during recovery. All experiments were carried out with commercially available reagents, highlighting the accessibility of the BONCAT method to researchers interested in stress responses as well as translational and posttranslational regulation in plants.
Asunto(s)
Alanina/análogos & derivados , Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Azidas/química , Colorantes/química , Biosíntesis de Proteínas , Alanina/química , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Cromatografía Liquida , Sequías , Calor , Immunoblotting , Luz , Reproducibilidad de los Resultados , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/efectos de la radiación , Cloruro de Sodio/farmacología , Coloración y Etiquetado/métodos , Estrés Fisiológico , Espectrometría de Masas en Tándem , Factores de TiempoRESUMEN
Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.