Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Epilepsy Behav ; 155: 109762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636144

RESUMEN

OBJECTIVE: To evaluate the clinical predictors of positive genetic investigation in developmental and epileptic encephalopathies, beyond the influence of Dravet Syndrome. METHODS: The study included 98 patients diagnosed with developmental and epileptic encephalopathies. The patients underwent Sanger sequencing of SCN1A, Chromosomal Microarray Analysis, and Whole Exome Sequencing. The association of clinical variables with a positive genetic test was investigated using univariate and multivariate analysis. RESULTS: Genetic diagnosis was identified in 47 (48 %) patients with developmental and epileptic encephalopathies. Beyond Dravet Syndrome influence, first seizure in the context of fever (p < 0.01), seizures precipitated by temperature (p = 0.04), cognitive regression (p = 0.04), hypotonia (p < 0.01), and focal seizures (p = 0.03) increased the chances of a positive genetic investigation. In contrast, atonic seizures (p = 0.01) and generalized discharges on electroencephalogram (p = 0.02) decreased the chances. Dravet Syndrome was positively associated with a genetic developmental and epileptic encephalopathies etiology (p < 0.01), whereas epilepsy with myoclonic-atonic seizures (p = 0.01), developmental and epileptic encephalopathies with spike-wave activation in sleep (p = 0.04), and Lennox-Gastaut syndrome (p = 0.03) were negatively associated. In multivariate analysis, the first seizure in the context of fever (p < 0.01) and hypotonia (p = 0.02) were positively, and atonic seizures (p = 0.01) were negatively and independently associated with a genetic etiology. CONCLUSION: The predictive variables of genetic investigation in developmental and epileptic encephalopathies are first seizure in the context of fever and hypotonia, whereas atonic seizures decrease the chances of finding a genetic cause for developmental and epileptic encephalopathies. Regarding epileptic syndromes, Dravet Syndrome is highly associated with a positive genetic test, whereas epilepsy with myoclonic-atonic seizures, developmental and epileptic encephalopathies with spike-wave activation in sleep, and Lennox-Gastaut syndrome are rarely associated with a positive genetic investigation.


Asunto(s)
Epilepsias Mioclónicas , Canal de Sodio Activado por Voltaje NAV1.1 , Humanos , Masculino , Femenino , Niño , Preescolar , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/diagnóstico , Canal de Sodio Activado por Voltaje NAV1.1/genética , Lactante , Adolescente , Electroencefalografía , Pruebas Genéticas , Adulto , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Adulto Joven , Secuenciación del Exoma , Síndrome de Lennox-Gastaut/genética , Síndrome de Lennox-Gastaut/diagnóstico
2.
Epilepsy Behav ; 121(Pt B): 106428, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31400936

RESUMEN

Genetic epidemiology studies have shown that most epilepsies involve some genetic cause. In addition, twin studies have helped strengthen the hypothesis that in most patients with epilepsy, a complex inheritance is involved. More recently, with the development of high-density single-nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously. Especially, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with large effect sizes, including inherited or de novo mutations in severe forms of childhood epilepsies. The identification of pathogenic variants in patients with these childhood epilepsies provides many benefits for patients and families, such as the confirmation of the genetic nature of the diseases. This process will allow for better genetic counseling, more accurate therapy decisions, and a significant positive emotional impact. However, to study the genetic component of the more common forms of epilepsy, the use of high-density SNP arrays in genome-wide association studies (GWAS) seems to be the strategy of choice. As such, researchers can identify loci containing genetic variants associated with the common forms of epilepsy. The knowledge generated over the past two decades about the effects of the mutations that cause the monogenic epilepsy is tremendous; however, the scientific community is just starting to apply this information in order to generate better target treatments.


Asunto(s)
Epilepsia , Estudio de Asociación del Genoma Completo , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/terapia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biología Molecular , Mutación/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda