RESUMEN
This paper is concerned with the influence of the incoming wall boundary layer thickness on the noise produced by a square finite wall-mounted cylinder in cross-flow. Acoustic and near wake velocity measurements have been taken in an anechoic wind tunnel for a cylinder in two different near-zero-pressure gradient turbulent boundary layers with thicknesses of 130% and 370% of the cylinder width, W. The cylinders have an aspect ratio of 0.29≤L/W≤22.9 (where L is the cylinder span) and were examined at a Reynolds number, based on width, of ReW = 1.4 × 104. The results presented in this paper demonstrate that increasing the height of the boundary layer delays the production of acoustic tones to higher aspect ratios. The height of the boundary layer changes the balance between upwash and downwash across the cylinder span, resulting in a delayed onset of the shedding regimes and correspondingly, the production of acoustic tones.
RESUMEN
This paper is concerned with the influence of camber on the noise of a wall-mounted finite airfoil with natural boundary layer transition. Tonal noise measurements taken in an aeroacoustic wind tunnel are presented for airfoils with aspect ratio of 2, NACAxx12 profile and camber between 0 and 6% at 40% chord. The results show camber is an important parameter that determines the operating conditions for which acoustic tone generation occurs and the number and intensity of the tones produced. Airfoils with 0%-2% camber have an acoustic signature that is dominated by a high amplitude primary tone, whereas the spectra of airfoils with higher camber of 4%-6% feature a more pronounced side tone structure. Tonal noise production does not collapse with lift coefficient, demonstrating that the local flow conditions influence the noise source. Tonal noise production is explained in terms of changes to mean flow topology, namely the location of flow separation, which is linked to tonal noise generation. Scaling of airfoil tonal noise is found to vary with angle of attack and pressure gradient. Empirical scaling laws for the primary tone frequency dependence on velocity are also derived for the cambered airfoils.
RESUMEN
Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions.
RESUMEN
In active noise control (ANC) systems, virtual microphones provide a means of projecting the zone of quiet away from the physical microphone to a remote location. To date, linear ANC algorithms, such as the filtered-x least mean square (FXLMS) algorithm, have been used with virtual sensing techniques. In this paper, a nonlinear ANC algorithm is developed for a virtual microphone by integrating the remote microphone technique with the filtered-s least mean square (FSLMS) algorithm. The proposed algorithm is evaluated experimentally in the cancellation of chaotic noise in a one-dimensional duct. The secondary paths evaluated experimentally exhibit non-minimum phase response and hence poor performance is obtained with the conventional FXLMS algorithm compared to the proposed FSLMS based algorithm. This is because the latter is capable of predicting the chaotic signal found in many physical processes responsible for noise. In addition, the proposed algorithm is shown to outperform the FXLMS based remote microphone technique under the causality constraint (when the propagation delay of the secondary path is greater than the primary path). A number of experimental results are presented in this paper to compare the performance of the FSLMS algorithm based virtual ANC algorithm with the FXLMS based virtual ANC algorithm.
Asunto(s)
Acústica/instrumentación , Algoritmos , Modelos Teóricos , Ruido/prevención & control , Dinámicas no Lineales , Procesamiento de Señales Asistido por Computador , Transductores , Interfaz Usuario-Computador , Análisis de los Mínimos Cuadrados , Espectrografía del SonidoRESUMEN
This letter presents an experimental study on the tonal noise generated by a sharp-edged flat plate at low-to-moderate Reynolds number. Flow and far-field noise data reveal that, in this particular case, the tonal noise appears to be governed by vortex shedding processes. Also related to the existence of the tonal noise is a region of separated flow slightly upstream of the trailing edge. Hydrodynamic fluctuations at selected vortex shedding frequencies are strongly amplified by the inflectional mean velocity profile in the separated shear layer. The amplified hydrodynamic fluctuations are diffracted by the trailing edge, producing strong tonal noise.
Asunto(s)
Acústica , Aeronaves/instrumentación , Modelos Teóricos , Ruido del Transporte , Viento , HumanosRESUMEN
This paper presents experimental data concerning the flow and noise generated by a sharp-edged flat plate at low-to-moderate Reynolds number (Reynolds number based on chord of 2.0 × 10(5) to 5.0 × 10(5)). The data are used to evaluate a variety of semi-empirical trailing edge noise prediction methods. All were found to under-predict noise at lower frequencies. Examination of the velocity spectra in the near wake reveals that there are energetic velocity fluctuations at low frequency about the trailing edge. A semi-empirical model of the surface pressure spectrum is derived for predicting the trailing edge noise at low-to-moderate Reynolds number.