Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Physiol ; 18(1): 2, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370799

RESUMEN

BACKGROUND: Circadian rhythms of physiology and behavior are driven by a circadian clock located in the suprachiasmatic nucleus of the hypothalamus. This clock is synchronized to environmental day/night cycles by photic input, which is dependent on the presence of mature brain-derived neurotrophic factor (BDNF) in the SCN. Mature BDNF is produced by the enzyme plasmin, which is converted from plasminogen by the enzyme tissue-type plasminogen activator (tPA). In this study, we evaluate circadian function in mice lacking functional tPA. RESULTS: tPA-/- mice have normal circadian periods, but show decreased nocturnal wheel-running activity. This difference is eliminated or reversed on the second day of a 48-h fast. Similarly, when placed on daily cycles of restricted food availability the genotypic difference in total wheel-running activity disappears, and tPA-/- mice show equivalent amounts of food anticipatory activity to wild type mice. CONCLUSIONS: These data suggest that tPA regulates nocturnal wheel-running activity, and that tPA differentially affects SCN-driven nocturnal activity rhythms and activity driven by fasting or temporal food restriction.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Locomoción , Activador de Tejido Plasminógeno/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ingestión de Alimentos , Ayuno , Privación de Alimentos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Núcleo Supraquiasmático/metabolismo , Activador de Tejido Plasminógeno/genética
2.
J Virol ; 90(3): 1397-413, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581985

RESUMEN

UNLABELLED: Latency-associated nuclear antigen (LANA) is a conserved, multifunctional protein encoded by members of the rhadinovirus subfamily of gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68). We previously demonstrated that MHV68 LANA (mLANA) is required for efficient lytic replication. However, mechanisms by which mLANA facilitates viral replication, including interactions with cellular and viral proteins, are not known. Thus, we performed a mass spectrometry-based interaction screen that defined an mLANA protein-protein interaction network for lytic viral replication consisting of 15 viral proteins and 191 cellular proteins, including 19 interactions previously reported in KSHV LANA interaction studies. We also employed a stable-isotope labeling technique to illuminate high-priority mLANA-interacting host proteins. Among the top prioritized mLANA-binding proteins was a cellular chaperone, heat shock cognate protein 70 (Hsc70). We independently validated the mLANA-Hsc70 interaction through coimmunoprecipitation and in vitro glutathione S-transferase (GST) pulldown assays. Immunofluorescence and cellular fractionation analyses comparing wild-type (WT) to mLANA-null MHV68 infections demonstrated mLANA-dependent recruitment of Hsc70 to nuclei of productively infected cells. Pharmacologic inhibition and small hairpin RNA (shRNA)-mediated knockdown of Hsc70 impaired MHV68 lytic replication, which functionally correlated with impaired viral protein expression, reduced viral DNA replication, and failure to form viral replication complexes. Replication of mLANA-null MHV68 was less affected than that of WT virus by Hsc70 inhibition, which strongly suggests that Hsc70 function in MHV68 lytic replication is at least partially mediated by its interaction with mLANA. Together these experiments identify proteins engaged by mLANA during the MHV68 lytic replication cycle and define a previously unknown role for Hsc70 in facilitating MHV68 lytic replication. IMPORTANCE: Latency-associated nuclear antigen (LANA) is a conserved gamma-2-herpesvirus protein important for latency maintenance and pathogenesis. For MHV68, this includes regulating lytic replication and reactivation. While previous studies of KSHV LANA defined interactions with host cell proteins that impact latency, interactions that facilitate productive viral replication are not known. Thus, we performed a differential proteomics analysis to identify and prioritize cellular and viral proteins that interact with the MHV68 LANA homolog during lytic infection. Among the proteins identified was heat shock cognate protein 70 (Hsc70), which we determined is recruited to host cell nuclei in an mLANA-dependent process. Moreover, Hsc70 facilitates MHV68 protein expression and DNA replication, thus contributing to efficient MHV68 lytic replication. These experiments expand the known LANA-binding proteins to include MHV68 lytic replication and demonstrate a previously unappreciated role for Hsc70 in regulating viral replication.


Asunto(s)
Antígenos Virales/metabolismo , Interacciones Huésped-Patógeno , Proteínas Nucleares/metabolismo , Rhadinovirus/fisiología , Replicación Viral , Animales , Antígenos Virales/genética , Línea Celular , Centrifugación , Eliminación de Gen , Inmunoprecipitación , Marcaje Isotópico , Espectrometría de Masas , Ratones , Proteínas Nucleares/genética , Unión Proteica , Mapas de Interacción de Proteínas , Rhadinovirus/genética
3.
Mol Cell Proteomics ; 13(11): 2896-910, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25106422

RESUMEN

In yeast, the conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain "reader" function and enzymatic HAT activity that might ultimately affect gene expression. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential "histone/epigenetic code." MS data are available via ProteomeXchange with identifier PXD001167.


Asunto(s)
Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Animales , Sitios de Unión/genética , Histona Acetiltransferasas/genética , Unión Proteica/genética , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
4.
J Proteomics Bioinform ; 9(Suppl 10)2016.
Artículo en Inglés | MEDLINE | ID: mdl-26962295

RESUMEN

The molecular effects of total body gamma-irradiation exposure are of critical importance as large populations of people could be exposed either by terrorists, nuclear blast, or medical therapy. In this study, we aimed to identify changes in the urine proteome using a non-human primate model system, Rhesus macaque, in order to characterize effects of acute radiation syndrome following whole body irradiation (Co-60) at 6.7 Gy and 7.4 Gy with a twelve day observation period. The urine proteome is potentially a valuable and non-invasive diagnostic for radiation exposure. Using high-resolution mass spectrometry, we identified 2346 proteins in the urine proteome. We show proteins involved in disease, cell adhesion, and metabolic pathway were significantly changed upon exposure to differing levels and durations of radiation exposure. Cell damage increased at a faster rate at 7.4 Gy compared with 6.7 Gy exposures. We report sets of proteins that are putative biomarkers of time- and dose-dependent radiation exposure. The proteomic study presented here is a comprehensive analysis of the urine proteome following radiation exposure.

5.
PLoS One ; 10(6): e0127943, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26065416

RESUMEN

Constitutive activation of the Rearranged during Transfection (RET) proto-oncogene leads to the development of MEN2A medullary thyroid cancer (MTC). The relatively clear genotype/phenotype relationship seen with RET mutations and the development of MEN2A is unusual in the fact that a single gene activity can drive the progression towards metastatic disease. Despite knowing the oncogene responsible for MEN2A, MTC, like most tumors of neural crest origin, remains largely resistant to chemotherapy. Constitutive activation of RET in a SK-N-MC cell line model reduces cell sensitivity to chemotherapy. In an attempt to identify components of the machinery responsible for the observed RET induced chemoresistance, we performed a proteomic screen of histones and associated proteins in cells with a constitutively active RET signaling pathway. The proteomic approach identified DNA-PKcs, a DNA damage response protein, as a target of the RET signaling pathway. Active DNA-PKcs, which is phosphorylated at site serine 2056 and localized to chromatin, was elevated within our model. Treatment with the RET inhibitor RPI-1 significantly reduced s2056 phosphorylation in RET cells as well as in a human medullary thyroid cancer cell line. Additionally, inhibition of DNA-PKcs activity diminished the chemoresistance observed in both cell lines. Importantly, we show that activated DNA-PKcs is elevated in medullary thyroid tumor samples and that expression correlates with expression of RET in thyroid tumors. These results highlight one mechanism by which RET signaling likely primes cells for rapid response to DNA damage and suggests DNA-PKcs as an additional target in MTC.


Asunto(s)
Carcinoma Neuroendocrino/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-ret/metabolismo , Neoplasias de la Tiroides/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Indoles/farmacología , Fosforilación/efectos de los fármacos , Proto-Oncogenes Mas , Transducción de Señal
6.
J Proteomics Bioinform ; 7(7): 166-178, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25419056

RESUMEN

INTRODUCTION: Arsenic is a widely distributed environmental toxicant that can cause multi-tissue pathologies. Proteomic assays allow for the identification of biological processes modulated by arsenic in diverse tissue types. METHOD: The altered abundance of proteins from HaCaT human keratinocyte cell line exposed to arsenic was quantified using a label-free LC-MS/MS mass spectrometry workflow. Selected proteomics results were validated using western blot and RT-PCR. A functional annotation analytics strategy that included visual analytical integration of heterogeneous data sets was developed to elucidate functional categories. The annotations integrated were mainly tissue localization, biological process and gene family. RESULT: The abundance of 173 proteins was altered in keratinocytes exposed to arsenic; in which 96 proteins had increased abundance while 77 proteins had decreased abundance. These proteins were also classified into 69 Gene Ontology biological process terms. The increased abundance of transferrin receptor protein (TFRC) was validated and also annotated to participate in response to hypoxia. A total of 33 proteins (11 increased abundance and 22 decreased abundance) were associated with 18 metabolic process terms. The Glutamate--cysteine ligase catalytic subunit (GCLC), the only protein annotated with the term sulfur amino acid metabolism process, had increased abundance while succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial precursor (SDHB), a tumor suppressor, had decreased abundance. CONCLUSION: A list of 173 differentially abundant proteins in response to arsenic trioxide was grouped using three major functional annotations covering tissue localization, biological process and protein families. A possible explanation for hyperpigmentation pathologies observed in arsenic toxicity is that arsenic exposure leads to increased iron uptake in the normally hypoxic human skin. The proteins mapped to metabolic process terms and differentially abundant are candidates for evaluating metabolic pathways perturbed by arsenicals.

7.
J Proteomics Bioinform ; 6(3): 43-50, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23976835

RESUMEN

Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

8.
J Proteomics Bioinform ; 6: 275-282, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25284964

RESUMEN

Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cancer of the skin. The incidence has been quadrupled with a 5-year mortality rate of 46%, presently there is no cure for metastatic disease. Despite the contribution of Merkel cell polyomavirus, the molecular events of MCC carcinogenesis are poorly defined. To better understand MCC carcinogensis, we have performed the first quantitative proteomic comparison of formalin-fixed, paraffin-embedded (FFPE) MCC tissues using another neuroendocrine tumor (carcinoid tumor of the lung) as controls. Bioinformatic analysis of the proteomic data has revealed that MCCs carry distinct protein expression patterns. Further analysis of significantly over-expressed proteins suggested the involvement of MAPK, PI3K/Akt/mTOR, wnt, and apoptosis signaling pathways. Our previous study and that from others have shown mTOR activation in MCCs. Therefore, we have focused on two downstream molecules of the mTOR pathway, lactate dehydrogenase B (LDHB) and heterogeneous ribonucleoprotein F (hnRNPF). We confirm over-expression of LDHB and hnRNPF in two primary human MCC cell lines, 16 fresh tumors, and in the majority of 80 tissue microarray samples. Moreover, mTOR inhibition suppresses LDHB and hnRNPF expression in MCC cells. The results of the current study provide insight into MCC carcinogenesis and provide rationale for mTOR inhibition in pre-clinical studies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda