Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Calcif Tissue Int ; 115(3): 315-327, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951181

RESUMEN

Vascular calcification affects the prognosis of patients with renal failure. Bisphosphonates are regarded as candidate anti-calcifying drugs because of their inhibitory effects on both calcium-phosphate aggregation and bone resorption. However, calcification in well-known rodent models is dependent upon bone resorption accompanied by excessive bone turnover, making it difficult to estimate accurately the anti-calcifying potential of drugs. Therefore, models with low bone resorption are required to extrapolate anti-calcifying effects to humans. Three bisphosphonates (etidronate, alendronate, and FYB-931) were characterised for their inhibitory effects on bone resorption in vivo and calcium-phosphate aggregation estimated by calciprotein particle formation in vitro. Then, their effects were examined using two models inducing ectopic calcification: the site where lead acetate was subcutaneously injected into mice and the transplanted, aorta obtained from a donor rat. The inhibitory effects of bisphosphonates on bone resorption and calcium-phosphate aggregation were alendronate > FYB-931 > etidronate and FYB-931 > alendronate = etidronate, respectively. In the lead acetate-induced model, calcification was most potently suppressed by FYB-931, followed by alendronate and etidronate. In the aorta-transplanted model, only FYB-931 suppressed calcification at a high dose. In both the models, no correlation was observed between calcification and bone resorption marker, tartrate-resistant acid phosphatase (TRACP). Results from the lead acetate-induced model showed that inhibitory potency against calcium-phosphate aggregation contributed to calcification inhibition. The two calcification models, especially the lead acetate-induced model, may be ideal for the extrapolation of calcifying response to humans because of calcium-phosphate aggregation rather than bone resorption as its mechanism.


Asunto(s)
Resorción Ósea , Modelos Animales de Enfermedad , Compuestos Organometálicos , Animales , Ratones , Humanos , Compuestos Organometálicos/farmacología , Ratas , Difosfonatos/farmacología , Masculino , Conservadores de la Densidad Ósea/farmacología , Alendronato/farmacología , Calcinosis/inducido químicamente , Ratones Endogámicos C57BL , Calcificación Vascular/inducido químicamente
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda