Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 13(5): e1006829, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28558063

RESUMEN

All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.


Asunto(s)
Aminoácidos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Presión Osmótica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Subunidades alfa de la Proteína de Unión al GTP/genética , Regulación Fúngica de la Expresión Génica , Metaboloma , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell Biol ; 26(1): 77-87, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16354681

RESUMEN

YAP is a multifunctional adapter protein and transcriptional coactivator with several binding partners well described in vitro and in cell culture. To explore in vivo requirements for YAP, we generated mice carrying a targeted disruption of the Yap gene. Homozygosity for the Yap(tm1Smil) allele (Yap-/-) caused developmental arrest around E8.5. Phenotypic characterization revealed a requirement for YAP in yolk sac vasculogenesis. Yolk sac endothelial and erythrocyte precursors were specified as shown by histology, PECAM1 immunostaining, and alpha globin expression. Nonetheless, development of an organized yolk sac vascular plexus failed in Yap-/- embryos. In striking contrast, vasculogenesis proceeded in both the allantois and the embryo proper. Mutant embryos showed patterned gene expression domains along the anteroposterior neuraxis, midline, and streak/tailbud. Despite this evidence of proper patterning and tissue specification, Yap-/- embryos showed developmental perturbations that included a notably shortened body axis, convoluted anterior neuroepithelium, caudal dysgenesis, and failure of chorioallantoic fusion. These results reveal a vital requirement for YAP in the developmental processes of yolk sac vasculogenesis, chorioallantoic attachment, and embryonic axis elongation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Membrana Corioalantoides/anomalías , Membrana Corioalantoides/irrigación sanguínea , Neovascularización Fisiológica/genética , Fosfoproteínas/genética , Saco Vitelino/anomalías , Saco Vitelino/irrigación sanguínea , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Expresión Génica , Marcación de Gen , Genes Letales , Homocigoto , Ratones , Ratones Mutantes , Mutación , Fosfoproteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP , Saco Vitelino/citología
3.
Mol Cell Biol ; 23(13): 4559-72, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12808097

RESUMEN

Most eukaryotic cells contain nearly equimolar amounts of nucleosomes and H1 linker histones. Despite their abundance and the potential functional specialization of H1 subtypes in multicellular organisms, gene inactivation studies have failed to reveal essential functions for linker histones in vivo. Moreover, in vitro studies suggest that H1 subtypes may not be absolutely required for assembly of chromosomes or nuclei. By sequentially inactivating the genes for three mouse H1 subtypes (H1c, H1d, and H1e), we showed that linker histones are essential for mammalian development. Embryos lacking the three H1 subtypes die by mid-gestation with a broad range of defects. Triple-H1-null embryos have about 50% of the normal ratio of H1 to nucleosomes. Mice null for five of these six H1 alleles are viable but are underrepresented in litters and are much smaller than their littermates. Marked reductions in H1 content were found in certain tissues of these mice and in another compound H1 mutant. These results demonstrate that the total amount of H1 is crucial for proper embryonic development. Extensive reduction of H1 in certain tissues did not lead to changes in nuclear size, but it did result in global shortening of the spacing between nucleosomes.


Asunto(s)
Histonas/fisiología , Nucleosomas/fisiología , Alelos , Animales , Núcleo Celular/metabolismo , Cromatina/química , Cromatografía Líquida de Alta Presión , Cromosomas/metabolismo , ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Heterocigoto , Histonas/química , Histonas/metabolismo , Homocigoto , Ratones , Ratones Noqueados , Nucleasa Microcócica/metabolismo , Modelos Biológicos , Mutación , Nucleosomas/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa , Timo/metabolismo , Factores de Tiempo
4.
PLoS One ; 10(5): e0128231, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26024523

RESUMEN

Hematopoietic regeneration after high dose chemotherapy necessitates activation of the stem cell pool. There is evidence that serum taken after chemotherapy comprises factors stimulating proliferation and self-renewal of CD34(+) hematopoietic stem and progenitor cells (HSPCs)--however, the nature of these feedback signals is yet unclear. Here, we addressed the question if specific microRNAs (miRNAs) or metabolites are affected after high dose chemotherapy. Serum taken from the same patients before and after chemotherapy was supplemented for in vitro cultivation of HSPCs. Serum taken after chemotherapy significantly enhanced HSPC proliferation, better maintained a CD34(+) immunophenotype, and stimulated colony forming units. Microarray analysis revealed that 23 miRNAs changed in serum after chemotherapy--particularly, miRNA-320c and miRNA-1275 were down-regulated whereas miRNA-3663-3p was up-regulated. miRNA-320c was exemplarily inhibited by an antagomiR, which seemed to increase proliferation. Metabolomic profiling demonstrated that 44 metabolites were less abundant, whereas three (including 2-hydroxybutyrate and taurocholenate sulphate) increased in serum upon chemotherapy. Nine of these metabolites were subsequently tested for effects on HSPCs in vitro, but none of them exerted a clear concentration dependent effect on proliferation, immunophenotype and colony forming unit formation. Taken together, serum profiles of miRNAs and metabolites changed after chemotherapy. Rather than individually, these factors may act in concert to recruit HSPCs into action for hematopoietic regeneration.


Asunto(s)
Antineoplásicos/farmacología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/efectos de los fármacos , MicroARNs/sangre , Antígenos CD34/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfoma/sangre , Linfoma/tratamiento farmacológico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mieloma Múltiple/sangre , Mieloma Múltiple/tratamiento farmacológico , Suero
5.
Dev Cell ; 16(3): 398-410, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19289085

RESUMEN

Outside cells of the preimplantation mouse embryo form the trophectoderm (TE), a process requiring the transcription factor Tead4. Here, we show that transcriptionally active Tead4 can induce Cdx2 and other trophoblast genes in parallel in embryonic stem cells. In embryos, the Tead4 coactivator protein Yap localizes to nuclei of outside cells, and modulation of Tead4 or Yap activity leads to changes in Cdx2 expression. In inside cells, Yap is phosphorylated and cytoplasmic, and this involves the Hippo signaling pathway component Lats. We propose that active Tead4 promotes TE development in outside cells, whereas Tead4 activity is suppressed in inside cells by cell contact- and Lats-mediated inhibition of nuclear Yap localization. Thus, differential signaling between inside and outside cell populations leads to changes in cell fate specification during TE formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Masa Celular Interna del Blastocisto/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Trofoblastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factor de Transcripción CDX2 , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Ectodermo/metabolismo , Técnicas de Cultivo de Embriones , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Mutantes , Ratones Transgénicos , Modelos Biológicos , Proteínas Musculares/genética , Fosfoproteínas/genética , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
6.
Mol Biol Cell ; 19(7): 3080-96, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18480408

RESUMEN

Phosphoinositides (PIPs) are ubiquitous regulators of signal transduction events in eukaryotic cells. PIPs are degraded by various enzymes, including PIP phosphatases. The integral membrane Sac1 phosphatases represent a major class of such enzymes. The central role of lipid phosphatases in regulating PIP homeostasis notwithstanding, the biological functions of Sac1-phosphatases remain poorly characterized. Herein, we demonstrate that functional ablation of the single murine Sac1 results in preimplantation lethality in the mouse and that Sac1 insufficiencies result in disorganization of mammalian Golgi membranes and mitotic defects characterized by multiple mechanically active spindles. Complementation experiments demonstrate mutant mammalian Sac1 proteins individually defective in either phosphoinositide phosphatase activity, or in recycling of the enzyme from the Golgi system back to the endoplasmic reticulum, are nonfunctional proteins in vivo. The data indicate Sac1 executes an essential household function in mammals that involves organization of both Golgi membranes and mitotic spindles and that both enzymatic activity and endoplasmic reticulum localization are important Sac1 functional properties.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Membrana/fisiología , Monoéster Fosfórico Hidrolasas/química , Huso Acromático , Alelos , Animales , Núcleo Celular/metabolismo , Células Madre Embrionarias/citología , Retículo Endoplásmico/metabolismo , Prueba de Complementación Genética , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Mitosis , Mutagénesis Sitio-Dirigida , Monoéster Fosfórico Hidrolasas/metabolismo
7.
Genes Dev ; 20(16): 2202-7, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16882971

RESUMEN

MicroRNAs (miRNAs) are short, noncoding RNAs that post-transcriptionally regulate gene expression. While hundreds of mammalian miRNA genes have been identified, little is known about the pathways that regulate the production of active miRNA species. Here we show that a large fraction of miRNA genes are regulated post-transcriptionally. During early mouse development, many miRNA primary transcripts, including the Let-7 family, are present at high levels but are not processed by the enzyme Drosha. An analysis of gene expression in primary tumors indicates that the widespread down-regulation of miRNAs observed in cancer is due to a failure at the Drosha processing step. These data uncover a novel regulatory step in miRNA function and provide a mechanism for miRNA down-regulation in cancer.


Asunto(s)
Embrión de Mamíferos/metabolismo , MicroARNs/metabolismo , Neoplasias/genética , Procesamiento Postranscripcional del ARN , Animales , Northern Blotting , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Desarrollo Embrionario , Femenino , Ratones , MicroARNs/genética , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/metabolismo , Células Madre/metabolismo , Teratocarcinoma/genética , Teratocarcinoma/metabolismo , Regulación hacia Arriba
8.
Development ; 129(16): 3851-60, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12135923

RESUMEN

The segmental heritage of all vertebrates is evident in the character of the vertebral column. And yet, the extent to which direct translation of pattern from the somitic mesoderm and de novo cell and tissue interactions pattern the vertebral column remains a fundamental, unresolved issue. The elements of vertebral column pattern under debate include both segmental pattern and anteroposterior regional specificity. Understanding how vertebral segmentation and anteroposterior positional identity are patterned requires understanding vertebral column cellular and developmental biology. In this study, we characterized alignment of somites and vertebrae, distribution of individual sclerotome progeny along the anteroposterior axis and development of the axial skeleton in zebrafish. Our clonal analysis of zebrafish sclerotome shows that anterior and posterior somite domains are not lineage-restricted compartments with respect to distribution along the anteroposterior axis but support a 'leaky' resegmentation in development from somite to vertebral column. Alignment of somites with vertebrae suggests that the first two somites do not contribute to the vertebral column. Characterization of vertebral column development allowed examination of the relationship between vertebral formula and expression patterns of zebrafish Hox genes. Our results support co-localization of the anterior expression boundaries of zebrafish hoxc6 homologs with a cervical/thoracic transition and also suggest Hox-independent patterning of regionally specific posterior vertebrae.


Asunto(s)
Somitos/citología , Columna Vertebral/embriología , Proteínas de Pez Cebra , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Modelos Biológicos , Columna Vertebral/citología , Cola (estructura animal)/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda