Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Immunol ; 206(8): 1923-1931, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722877

RESUMEN

Cigarette smoke exposure induces inflammation marked by rapid and sustained neutrophil infiltration, IL-1α, release and altered surfactant homeostasis. However, the extent to which neutrophils and IL-1α contribute to the maintenance of pulmonary surfactant homeostasis is not well understood. We sought to investigate whether neutrophils play a role in surfactant clearance as well as the effect of neutrophil depletion and IL-1α blockade on the response to cigarette smoke exposure. In vitro and in vivo administration of fluorescently labeled surfactant phosphatidylcholine was used to assess internalization of surfactant by lung neutrophils and macrophages during or following cigarette smoke exposure in mice. We also depleted neutrophils using anti-Ly-6G or anti-Gr-1 Abs, or we neutralized IL-1α using a blocking Ab to determine their respective roles in regulating surfactant homeostasis during cigarette smoke exposure. We observed that neutrophils actively internalize labeled surfactant both in vitro and in vivo and that IL-1α is required for smoke-induced elevation of surfactant protein (SP)-A and SP-D levels. Neutrophil depletion during cigarette smoke exposure led to a further increase in SP-A levels in the bronchoalveolar lavage and increased IL-1α, CCL2, GM-CSF, and G-CSF release. Finally, macrophage expression of Mmp12, a protease linked to emphysema, was increased in neutrophil-depleted groups and decreased following IL-1α blockade. Taken together, our results indicate that neutrophils and IL-1α signaling are actively involved in surfactant homeostasis and that the absence of neutrophils in the lungs during cigarette smoke exposure leads to an IL-1α-dependent exacerbation of the inflammatory response.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Inflamación/inmunología , Interleucina-1alfa/metabolismo , Neutrófilos/inmunología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Animales , Anticuerpos Bloqueadores/metabolismo , Modelos Animales de Enfermedad , Femenino , Homeostasis , Humanos , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Transducción de Señal , Regulación hacia Arriba
2.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L37-L47, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35638643

RESUMEN

Treatment of the cigarette smoke-associated lung diseases, such as chronic obstructive pulmonary disease (COPD), has largely focused on broad-spectrum anti-inflammatory therapies. However, these therapies, such as high-dose inhaled corticosteroids, enhance patient susceptibility to lung infection and exacerbation. Our objective was to assess whether the cationic host defense peptide, human ß-defensin 2 (hBD-2), can simultaneously reduce pulmonary inflammation in cigarette smoke-exposed mice while maintaining immune competence during bacterial exacerbation. Mice were exposed to cigarette smoke acutely (4 days) or chronically (5 days/wk for 7 wk) and administered hBD-2 intranasally or by gavage. In a separate model of acute exacerbation, chronically exposed mice treated with hBD-2 were infected with nontypeable Haemophilus influenzae before euthanasia. In the acute exposure model, cigarette smoke-associated pulmonary neutrophilia was significantly blunted by both local and systemic hBD-2 administration. Similarly, chronically exposed mice administered hBD-2 therapeutically exhibited reduced pulmonary neutrophil infiltration and downregulated proinflammatory signaling in the lungs compared with vehicle-treated mice. Finally, in a model of acute bacterial exacerbation, hBD-2 administration effectively limited neutrophil infiltration in the lungs while markedly reducing pulmonary bacterial load. This study shows that hBD-2 treatment can significantly attenuate lung neutrophilia induced by cigarette smoke exposure while preserving immune competence and promoting an appropriate host-defense response to bacterial stimuli.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , beta-Defensinas , Animales , Humanos , Pulmón , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Fumar , beta-Defensinas/farmacología
3.
Respir Res ; 23(1): 275, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209215

RESUMEN

BACKGROUND: Hypersensitivity pneumonitis (HP) is an interstitial lung disease characterized by antigen-triggered neutrophilic exacerbations. Although CD4+ T cells are sufficient for HP pathogenesis, this never translated into efficient T cell-specific therapies. Increasing evidence shows that B cells also play decisive roles in HP. Here, we aimed to further define the respective contributions of B and T cells in subacute experimental HP. METHODS: Mice were subjected to a protocol of subacute exposure to the archaeon Methanosphaera stadmanae to induce experimental HP. Using models of adoptive transfers of B cells and T cells in Rag1-deficient mice and of B cell-specific S1P1 deletion, we assessed the importance of B cells in the development of HP by evaluating inflammation in bronchoalveolar lavage fluid. We also aimed to determine if injected antibodies targeting B and/or T cells could alleviate HP exacerbations using a therapeutic course of intervention. RESULTS: Even though B cells are not sufficient to induce HP, they strongly potentiate CD4+ T cell-induced HP­associated neutrophilic inflammation in the airways. However, the reduction of 85% of lung B cells in mice with a CD19-driven S1P1 deletion does not dampen HP inflammation, suggesting that lung B cells are not necessary in large numbers to sustain local inflammation. Finally, we found that injecting antibodies targeting B cells after experimental HP was induced does not dampen neutrophilic exacerbation. Yet, injection of antibodies directed against B cells and T cells yielded a potent 76% inhibition of neutrophilic accumulation in the lungs. This inhibition occurred despite partial, sometimes mild, depletion of B cells and T cells subsets. CONCLUSIONS: Although B cells are required for maximal inflammation in subacute experimental HP, partial reduction of B cells fails to reduce HP-associated inflammation by itself. However, co-modulation of T cells and B cells yields enhanced inhibition of HP exacerbation caused by an antigenic rechallenge.


Asunto(s)
Alveolitis Alérgica Extrínseca , Linfocitos T , Animales , Antígenos , Linfocitos B , Líquido del Lavado Bronquioalveolar , Proteínas de Homeodominio , Inflamación/patología , Pulmón/patología , Ratones
4.
Am J Respir Cell Mol Biol ; 63(2): 209-218, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32289229

RESUMEN

In a proportion of patients with hypersensitivity pneumonitis, the biological and environmental factors that sustain inflammation are ill defined, resulting in no effective treatment option. Bioaerosols found in occupational settings are complex and often include Toll-like receptor ligands, such as endotoxins. How Toll-like receptor ligands contribute to the persistence of hypersensitivity pneumonitis, however, remains poorly understood. In a previous study, we found that an S1P1 (sphingosine-1-phosphate receptor 1) agonist prevented the reactivation of antigen-driven B-cell responses in the lung. Here, we assessed the impact of endotoxins on B-cell activation in preexisting hypersensitivity pneumonitis and the role of S1P1 in this phenomenon. The impact of endotoxins on pre-established hypersensitivity pneumonitis was studied in vivo. S1P1 levels were tracked on B cells in the course of the disease using S1P1-eGFP knockin mice, and the role of S1P1 on B-cell functions was assessed using pharmacological tools. S1P1 was found on B cells in experimental hypersensitivity pneumonitis. Endotoxin exposure enhanced neutrophil accumulation in the BAL of mice with experimental hypersensitivity pneumonitis. This was associated with enhanced CD69 cell-surface expression on lymphocytes in the BAL. In isolated B cells, endotoxins increased cell-surface levels of costimulatory molecules and CD69, which was prevented by an S1P1 agonist. S1P1 modulators also reduced TNF production by B cells and their capacity to trigger T-cell cooperation ex vivo. An S1P1 ligand directly inhibited endotoxin-induced B-cell activation.


Asunto(s)
Alveolitis Alérgica Extrínseca/inmunología , Linfocitos B/inmunología , Endotoxinas/inmunología , Receptores de Esfingosina-1-Fosfato/inmunología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Femenino , Lectinas Tipo C/inmunología , Activación de Linfocitos/inmunología , Ratones , Neutrófilos/inmunología
5.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L717-L727, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32845704

RESUMEN

Most of electronic cigarette (e-cigarette) users are also smoking tobacco cigarettes. Because of the relative novelty of this habit, very little is known on the impact of vaping on pulmonary health, even less on the potential interactions of dual e-cigarette and tobacco cigarette use. Therefore, we used well-established mouse models to investigate the impact of dual exposure to e-cigarette vapors and tobacco cigarette smoke on lung homeostasis. Groups of female BALB/c mice were exposed to room air, tobacco smoke only, nicotine-free flavor-free e-cigarette vapors only or both tobacco smoke and e-cigarette vapors. Moreover, since tobacco smoke and electronic cigarette vapors both affect circadian processes in the lungs, groups of mice were euthanized at two different time points during the day. We found that dual-exposed mice had altered lung circadian gene expression compared with mice exposed to tobacco smoke alone. Dual-exposed mice also had different frequencies of dendritic cells, macrophages, and neutrophils in the lung tissue compared with mice exposed to tobacco smoke alone, an observation also valid for B-lymphocytes and CD4+ and CD8+ T lymphocytes. Exposure to e-cigarette vapors also impacted the levels of immunoglobulins in the bronchoalveolar lavage and serum. Finally, e-cigarette and dual exposures increased airway resistance compared with mice exposed to room air or tobacco smoke alone, respectively. Taken together, these data suggest that e-cigarette vapors, even without nicotine or flavors, could affect how the lungs react to tobacco cigarette smoke exposure in dual users, potentially altering the pathological course triggered by smoking.


Asunto(s)
Linfocitos B/efectos de los fármacos , Cigarrillo Electrónico a Vapor/efectos adversos , Humo/efectos adversos , Fumar/efectos adversos , Animales , Sistemas Electrónicos de Liberación de Nicotina , Pulmón/efectos de los fármacos , Ratones Endogámicos BALB C , Nicotina/metabolismo , Nicotina/farmacología
6.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L391-L402, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32640840

RESUMEN

Genetic predispositions and environmental exposures are regarded as the main predictors of respiratory disease development. Although the impact of dietary essential nutrient deficiencies on cardiovascular disease, obesity, and type II diabetes has been widely studied, it remains poorly explored in chronic respiratory diseases. Dietary choline and methionine deficiencies are common in the population, and their impact on pulmonary homeostasis is currently unknown. Mice were fed choline- and/or methionine-deficient diets while being exposed to room-air or cigarette smoke for up to 4 wk. Lung functions were assessed using the FlexiVent. Pulmonary transcriptional activity was assessed using gene expression microarrays and quantitative PCR. Immune cells, cytokines, and phosphatidylcholine were quantified in the bronchoalveolar lavage. In this study, we found that short-term dietary choline and/or methionine deficiencies significantly affect lung function in mice in a reversible manner. It also reduced transcriptional levels of collagens and elastin as well as pulmonary surfactant phosphatidylcholine levels. We also found that dietary choline and/or methionine deficiencies markedly interfered with the pulmonary response to cigarette smoke exposure, modulating lung function and dampening inflammation. These findings clearly show that dietary choline and/or methionine deficiencies can have dramatic pathophysiological effects on the lungs and can also affect the pathobiology of cigarette smoke-induced pulmonary alterations. Expanding our knowledge in the field of "nutri-respiratory research" may reveal a crucial role for essential nutrients in pulmonary health and disease, which may prove to be as relevant as genetic predispositions and environmental exposures.


Asunto(s)
Colina/farmacología , Homeostasis/efectos de los fármacos , Pulmón/efectos de los fármacos , Metionina/farmacología , Nicotiana/efectos adversos , Humo/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Femenino , Inflamación/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Surfactantes Pulmonares/metabolismo , Fumar/efectos adversos
7.
Am J Pathol ; 189(8): 1536-1546, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125551

RESUMEN

Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in fibrillin-1 (Fbn1). Although aortic rupture is the major cause of mortality in MFS, patients also experience pulmonary complications, which are poorly understood. Loss of basal nitric oxide (NO) production and vascular integrity has been implicated in MFS aortic root disease, yet their contribution to lung complications remains unknown. Because of its capacity to potentiate the vasodilatory NO/cyclic guanylate monophosphate signaling pathway, we assessed whether the phosphodiesterase-5 inhibitor, sildenafil (SIL), could attenuate aortic root remodeling and emphysema in a mouse model of MFS. Despite increasing NO-dependent vasodilation, SIL unexpectedly elevated mean arterial blood pressure, failed to inhibit MFS aortic root dilation, and exacerbated elastic fiber fragmentation. In the lung, early pulmonary artery dilation observed in untreated MFS mice was delayed by SIL treatment, and the severe emphysema-like alveolar destruction was prevented. In addition, improvements in select parameters of lung function were documented. Subsequent microarray analyses showed changes to gene signatures involved in the inflammatory response in the MFS lung treated with SIL, without significant down-regulation of connective tissue or transforming growth factor-ß signaling genes. Because phosphodiesterase-5 inhibition leads to improved lung histopathology and function, the effects of SIL against emphysema warrant further investigation in the settings of MFS despite limited efficacy on aortic root remodeling.


Asunto(s)
Síndrome de Marfan , Arteria Pulmonar/fisiopatología , Enfisema Pulmonar , Citrato de Sildenafil/farmacología , Vasodilatación/efectos de los fármacos , Animales , Femenino , Masculino , Síndrome de Marfan/complicaciones , Síndrome de Marfan/tratamiento farmacológico , Síndrome de Marfan/fisiopatología , Ratones , Ratones Mutantes , Enfisema Pulmonar/etiología , Enfisema Pulmonar/fisiopatología , Enfisema Pulmonar/prevención & control
9.
Am J Physiol Lung Cell Mol Physiol ; 316(4): L669-L678, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30702343

RESUMEN

Smoking alters pulmonary reverse lipid transport and leads to intracellular lipid accumulation in alveolar macrophages. We investigated whether stimulating reverse lipid transport with an agonist of the liver X receptor (LXR) would help alveolar macrophages limit lipid accumulation and dampen lung inflammation in response to cigarette smoke. Mice were exposed to cigarette smoke and treated intraperitoneally with the LXR agonist T0901317. Expression of lipid capture and lipid export genes was assessed in lung tissue and alveolar macrophages. Pulmonary inflammation was assessed in the bronchoalveolar lavage (BAL). Finally, cholesterol efflux capacity and pulmonary surfactant levels were determined. In room air-exposed mice, T0901317 increased the expression of lipid export genes in macrophages and the whole lung and increased cholesterol efflux capacity without inducing inflammation or affecting the pulmonary surfactant. However, cigarette smoke-exposed mice treated with T0901317 showed a marked increase in BAL neutrophils, IL-1α, C-C motif chemokine ligand 2, and granulocyte-colony-stimulating factor levels. T0901317 treatment in cigarette smoke-exposed mice failed to increase the ability of alveolar macrophages to export cholesterol and markedly exacerbated IL-1α release. Finally, T0901317 led to pulmonary surfactant depletion only in cigarette smoke-exposed mice. This study shows that hyperactivation of LXR and the associated lipid capture/export mechanisms only have minor pulmonary effects on the normal lung. However, in the context of cigarette smoke exposure, where the pulmonary surfactant is constantly oxidized, hyperactivation of LXR has dramatic adverse effects, once again showing the central role of lipid homeostasis in the pulmonary response to cigarette smoke exposure.


Asunto(s)
Receptores X del Hígado/agonistas , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Nicotiana/toxicidad , Surfactantes Pulmonares/metabolismo , Humo/efectos adversos , Animales , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/genética , Fumar Cigarrillos/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Hidrocarburos Fluorados/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos Alveolares/patología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Sulfonamidas/farmacología
10.
J Muscle Res Cell Motil ; 40(3-4): 309-318, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31222587

RESUMEN

Chronic obstructive pulmonary disease (COPD) can sometimes be associated with skeletal muscle atrophy. Hypoxemic episodes, which occur during disease exacerbation and daily physical activity, are frequent in COPD patients. However, the link between hypoxemia and muscle atrophy remains unclear, along with mechanisms of muscle hypoxic stress response. Myogenic progenitors (MPs) and fibro/adipogenic progenitors (FAPs) express CD34 and participate to muscle mass maintenance. Although there is evidence linking CD34 expression and muscle repair, the link between CD34 expression, muscle wasting and the hypoxic stress observed in COPD has never been studied. Using a 2-day model of exposure to hypoxic conditions, we investigated the impact of hypoxia on skeletal muscle wasting and function, and elucidated the importance of CD34 expression in that response. A 2-day exposure to hypoxic conditions induces muscle atrophy, which was significantly worse in Cd34-/- mice compared to wild type (WT). Moreover, the lack of CD34 expression negatively impacts the maximal strength of the extensor digitorum longus muscle in response to hypoxia. Following exposure to hypoxic conditions, FAPs (which support MPs differentiation and myogenesis) are significantly lower in Cd34-/- mice compared to WT animals while the expression of myogenic regulatory factors and degradation factors (Atrogin) are similar. CD34 expression is important in the maintenance of muscle mass and function in response to hypoxic stress. These results highlight a new potential role for CD34 in muscle mass maintenance in hypoxic stress such as observed in COPD.


Asunto(s)
Antígenos CD34/metabolismo , Músculo Esquelético/metabolismo , Animales , Hipoxia de la Célula/fisiología , Humanos , Ratones
11.
Respir Res ; 19(1): 131, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970083

RESUMEN

BACKGROUND: Cigarette smoke exposure can affect pulmonary lipid homeostasis and cause a progressive increase in pulmonary antibodies against oxidized low-density lipoproteins (OxLDL). Similarly, increased anti-OxLDL antibodies are observed in atherosclerosis, a pathology also tightly associated with smoking and lipid homeostasis disruption. Several immunization strategies against oxidized lipid species to help with their clearance have been shown to reduce the formation of atherosclerotic lesions. Since oxidized lipids are generated during cigarette smoke exposure, we investigated the impact of a prophylactic immunization protocol against OxLDL on the pulmonary effects of cigarette smoke exposure in mice. METHODS: Mice were immunized systemically with a mixture of human OxLDL (antigen source) and AddaVax (adjuvant) or PBS alone prior to the initiation of acute (2 week) or sub-chronic (8 weeks) cigarette smoke exposure protocols. Anti-OxLDL antibodies were measured in the bronchoalveolar lavage (BAL) fluid and serum by direct ELISA. Pulmonary impacts of cigarette smoke exposure and OxLDL immunization were assessed by measuring BAL inflammatory cells, lung functions, and changes in lung structure and gene levels of matrix/matrix-related genes. RESULTS: Immunization to OxLDL led to a marked increase in circulating and pulmonary antibodies against OxLDL that persisted during cigarette smoke exposure. OxLDL immunization did not exacerbate or reduce the inflammatory response following acute or sub-chronic exposure to cigarette smoke. OxLDL immunization alone had effects similar to cigarette smoke exposure on lung functions but OxLDL immunization and cigarette smoke exposure had no additive effects on these parameters. No obvious changes in lung histology, airspace or levels of matrix and matrix-related genes were caused by OxLDL immunization compared to vehicle treatment. CONCLUSIONS: Overall, this study shows for the first time that a prophylactic immunization protocol against OxLDL can potentially have detrimental effects lung functions, without having additive effects over cigarette smoke exposure. This work sheds light on a complex dynamic between anti-OxLDL antibodies and the pulmonary response to cigarette smoke exposure.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/inmunología , Lipoproteínas LDL/inmunología , Trastornos Respiratorios/inmunología , Trastornos Respiratorios/prevención & control , Humo/efectos adversos , Administración por Inhalación , Animales , Femenino , Humanos , Inmunización , Lipoproteínas LDL/antagonistas & inhibidores , Ratones , Ratones Endogámicos BALB C , Trastornos Respiratorios/inducido químicamente
12.
Eur Respir J ; 50(3)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28889112

RESUMEN

Reverse lipid transport is critical to maintain homeostasis. Smoking causes lipid accumulation in macrophages, therefore suggesting suboptimal reverse lipid transport mechanisms. In this study, we investigated the interplay between smoking and reverse lipid transport and the consequences on smoking-induced lung and peripheral alterations.To investigate the relationship between smoking and reverse lipid transport, we used a clinical lung gene expression dataset and a mouse model of cigarette smoke exposure. We also used ApoA-1-/- mice, with reduced reverse lipid transport capacity, and a recombinant ApoA-1 Milano/phospholipid complex (MDCO-216) to boost reverse lipid transport. Cellular and functional analyses were performed on the lungs and impact on body composition was also assessed.Smoking affects pulmonary expression of abca1, abcg1, apoe and scarb1 in both mice and humans, key genes involved in reverse lipid transport. In mice, the capacity of bronchoalveolar lavage fluid and serum to stimulate cholesterol efflux in macrophages was increased after a single exposure to cigarette smoke. ApoA-1-/- mice showed increased lung neutrophilia, larger macrophages and greater loss in lean mass in response to smoking, whereas treatment with MDCO-216 reduced the size of macrophages and increased the lean mass of mice exposed to cigarette smoke.Altogether, this study shows a functional interaction between smoking and reverse lipid transport, and opens new avenues for better understanding the link between metabolic and pulmonary diseases related to smoking.


Asunto(s)
Apolipoproteína A-I/farmacología , Fumar Cigarrillos/efectos adversos , Metabolismo de los Lípidos , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Fosfatidilcolinas/farmacología , Animales , Apolipoproteína A-I/genética , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Combinación de Medicamentos , Femenino , Expresión Génica , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Respir Res ; 18(1): 33, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28183298

RESUMEN

We designed a crossover and placebo-controlled trial to investigate the impact of a 1-h acute vaping session of nicotine-free and flavour-free e-liquid on the pulmonary functions and respiratory mechanics of healthy and asthmatic individuals. This study shows that a 1-h vaping session of a high-grade and contaminant-free mixture of propylene glycol and glycerol using a commercially available electronic cigarette performed in a controlled environment does not significantly impact pulmonary functions, respiratory mechanics or symptoms in healthy or asthmatic subjects.


Asunto(s)
Asma/fisiopatología , Glicerol/efectos adversos , Pulmón/fisiopatología , Propilenglicol/efectos adversos , Pruebas de Función Respiratoria , Vapeo/efectos adversos , Administración por Inhalación , Adulto , Estudios Cruzados , Femenino , Glicerol/administración & dosificación , Humanos , Masculino , Nicotina , Efecto Placebo , Propilenglicol/administración & dosificación
14.
Am J Respir Crit Care Med ; 193(4): 362-75, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26681127

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.


Asunto(s)
Pulmón/embriología , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/embriología , Enfermedad Pulmonar Obstructiva Crónica/patología , Adulto , Femenino , Humanos , Pulmón/crecimiento & desarrollo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Enfisema Pulmonar/embriología , Enfisema Pulmonar/patología , Transducción de Señal , Fumar/efectos adversos
15.
Infect Immun ; 84(5): 1536-1547, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26930709

RESUMEN

Streptococcus pneumoniae is a leading cause of invasive bacterial infections, with nasal colonization an important first step in disease. While cigarette smoking is a strong risk factor for invasive pneumococcal disease, the underlying mechanisms remain unknown. This is partly due to a lack of clinically relevant animal models investigating nasal pneumococcal colonization in the context of cigarette smoke exposure. We present a model of nasal pneumococcal colonization in cigarette smoke-exposed mice and document, for the first time, that cigarette smoke predisposes to invasive pneumococcal infection and mortality in an animal model. Cigarette smoke increased the risk of bacteremia and meningitis without prior lung infection. Mechanistically, deficiency in interleukin 1α (IL-1α) or platelet-activating factor receptor (PAFR), an important host receptor thought to bind and facilitate pneumococcal invasiveness, did not rescue cigarette smoke-exposed mice from invasive pneumococcal disease. Importantly, we observed cigarette smoke to attenuate nasal inflammatory mediator expression, particularly that of neutrophil-recruiting chemokines, normally elicited by pneumococcal colonization. Smoking cessation during nasal pneumococcal colonization rescued nasal neutrophil recruitment and prevented invasive disease in mice. We propose that cigarette smoke predisposes to invasive pneumococcal disease by suppressing inflammatory processes of the upper respiratory tract. Given that smoking prevalence remains high worldwide, these findings are relevant to the continued efforts to reduce the invasive pneumococcal disease burden.


Asunto(s)
Portador Sano/inmunología , Mucosa Nasal/microbiología , Infecciones Neumocócicas/inmunología , Humo/efectos adversos , Fumar/efectos adversos , Streptococcus pneumoniae/crecimiento & desarrollo , Animales , Bacteriemia/microbiología , Bacteriemia/prevención & control , Portador Sano/prevención & control , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Meningitis Neumocócica/microbiología , Meningitis Neumocócica/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Nasal/inmunología , Neutrófilos/inmunología , Infecciones Neumocócicas/prevención & control , Streptococcus pneumoniae/inmunología
16.
Respir Res ; 17(1): 97, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27488019

RESUMEN

BACKGROUND: Chronic cigarette smoke exposure is known to activate the adaptive immune system; however, the functional role of these processes is currently unknown. Given the role of oxidized lipids in driving innate inflammatory responses to cigarette smoke, we investigated whether an adaptive immune response against damaged lipids was induced following chronic cigarette smoke exposure. METHODS AND RESULTS: Using a well-established mouse model, we showed that cigarette smoke exposure led to a progressive increase in pulmonary antibodies against oxidized low-density lipoprotein (OxLDL). Functionally, we found that intranasal delivery of an antibody against oxidized phosphatidylcholine (anti-OxPC; clone E06) increased lipid and particle uptake by pulmonary macrophages without exacerbating cigarette smoke-induced neutrophilia. We also found that anti-OxPC treatment increased particle uptake following smoking cessation. Finally, the frequency of pulmonary macrophages with internalized particles was increased after prolonged smoke exposure, at which time lung anti-OxPC responses were highest. CONCLUSIONS: Altogether, this is the first report to demonstrate a non-pathogenic, and possibly protective, function of a newly identified autoantibody induced by chronic cigarette smoke exposure.


Asunto(s)
Formación de Anticuerpos , Lípidos/inmunología , Pulmón/inmunología , Nicotiana , Humo , Inmunidad Adaptativa/efectos de los fármacos , Animales , Líquido del Lavado Bronquioalveolar/citología , Femenino , Lipoproteínas LDL/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Fosfatidilcolinas/inmunología , Cese del Hábito de Fumar
17.
J Immunol ; 193(6): 3134-45, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25092891

RESUMEN

Cigarette smoke has a broad impact on the mucosal environment with the ability to alter host defense mechanisms. Within the context of a bacterial infection, this altered host response is often accompanied by exacerbated cellular inflammation, characterized by increased neutrophilia. The current study investigated the mechanisms of neutrophil recruitment in a murine model of cigarette smoke exposure and, subsequently, a model of both cigarette smoke exposure and bacterial infection. We investigated the role of IL-1 signaling in neutrophil recruitment and found that cigarette smoke-induced neutrophilia was dependent on IL-1α produced by alveolar macrophages. In addition to being the crucial source of IL-1α, alveolar macrophages isolated from smoke-exposed mice were primed for excessive IL-1α production in response to bacterial ligands. To test the relevance of exaggerated IL-1α production in neutrophil recruitment, a model of cigarette smoke exposure and nontypeable Haemophilus influenzae infection was developed. Mice exposed to cigarette smoke elaborated an exacerbated CXCR2-dependent neutrophilia in response to nontypeable Haemophilus influenzae. Exacerbated neutrophilia was dependent on IL-1α priming of the pulmonary environment by cigarette smoke as exaggerated neutrophilia was dependent on IL-1 signaling. These data characterize a novel mechanism of cigarette smoke priming the lung mucosa toward greater IL-1-driven neutrophilic responses to bacteria, with a central role for the alveolar macrophage in this process.


Asunto(s)
Haemophilus influenzae/inmunología , Interleucina-1alfa/inmunología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Receptores de Interleucina-8B/inmunología , Humo/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Quimiocina CXCL1/biosíntesis , Quimiocina CXCL5/biosíntesis , Quimiocina CXCL5/genética , Quimiocina CXCL5/inmunología , Femenino , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/microbiología , Inflamación/inmunología , Recuento de Leucocitos , Pulmón/patología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología , ARN Mensajero/biosíntesis , Receptores de Interleucina-8B/biosíntesis , Receptores de Interleucina-8B/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/microbiología , Nicotiana/efectos adversos
18.
Eur Respir J ; 46(5): 1451-60, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26113683

RESUMEN

Overwhelming evidence links inflammation to the pathogenesis of smoking-related pulmonary diseases, especially chronic obstructive pulmonary disease (COPD). Despite an increased understanding of the disease pathogenesis, mechanisms initiating smoking-induced inflammatory processes remain incompletely understood. To investigate the mechanisms that initiate and propagate smoke-induced inflammation, we used a well-characterised mouse model of cigarette smoke exposure, mice deficient for interleukin (IL)-1α, IL-1ß and Toll-like receptor 4, and antibodies blocking granulocyte-macrophage colony-stimulating factor (GM-CSF). Studies were also pursued using intranasal delivery of human oxidised low-density lipoprotein (hOxLDL), a source of oxidised lipids, to investigate the inflammatory processes associated with impaired lipid homeostasis. We found that cigarette smoke exposure rapidly led to lipid accumulation in pulmonary macrophages, a defining feature of foam cells, which in turn released high levels of IL-1α. In smoke-exposed IL-1α-deficient mice, phospholipids accumulated in the bronchoalveolar lavage, a phenomenon also observed when blocking GM-CSF. Intranasal administration of hOxLDL led to lipid accumulation in macrophages and initiated an inflammatory process that mirrored the characteristics of cigarette smoke-induced inflammation. These findings identify a link between lipid accumulation in macrophages, inflammation and damaged surfactant, suggesting that the response to damaged pulmonary surfactant is a central mechanism that drives cigarette smoke-induced inflammation. Further investigations are required to explore the role of distorted lipid homeostasis in the pathogenesis of COPD.


Asunto(s)
Interleucina-1alfa/metabolismo , Lipoproteínas LDL/administración & dosificación , Macrófagos Alveolares/patología , Neumonía/metabolismo , Fumar/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Homeostasis , Humanos , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/fisiopatología , Receptor Toll-Like 4/metabolismo
19.
Eur Respir J ; 45(1): 191-200, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25034559

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterised by a state of chronic pulmonary inflammation punctuated by microbial exacerbations. Despite advances in treatment options, COPD remains difficult to manage. In this study, we investigated the potential of peroxisome proliferator-activated receptor (PPAR)γ activation as a new therapy against cigarette smoke-induced inflammation and its associated bacterial exacerbation. C57BL/6 mice were exposed to room air or cigarette smoke for either 4 days or 4 weeks and treated either prophylactically or therapeutically with rosiglitazone. The impact of rosiglitazone on cigarette smoke-induced exacerbated response to the bacterial pathogen nontypeable Haemophilus influenzae (NTHi) was studied using the therapeutic treatment protocol. We found that rosiglitazone was able to reduce cigarette smoke-induced neutrophilia both when administered prophylactically or therapeutically. Therapeutic intervention with rosiglitazone was also effective in preventing cigarette smoke-induced neutrophilia exacerbation following NTHi infection. Moreover, the anti-inflammatory effects of rosiglitazone did not lead to an increase in the pulmonary bacterial burden, unlike dexamethasone. Altogether, our data suggest that pharmacological activation of PPARγ may be an effective therapeutic approach to improve COPD management, as it is able to reduce cigarette smoke-induced inflammation and decrease the magnitude of bacterial exacerbations, without compromising the ability of the immune system to control the infection.


Asunto(s)
Infecciones Bacterianas/fisiopatología , Regulación Bacteriana de la Expresión Génica , Pulmón/efectos de los fármacos , PPAR gamma/metabolismo , Fumar/efectos adversos , Corticoesteroides/uso terapéutico , Animales , Líquido del Lavado Bronquioalveolar , Dexametasona/farmacología , Femenino , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Neumonía/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Rosiglitazona , Tiazolidinedionas/farmacología , Productos de Tabaco
20.
Respir Res ; 15: 42, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24730756

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is known to greatly affect ventilation (V) and perfusion (Q) of the lung through pathologies such as inflammation and emphysema. However, there is little direct evidence regarding how these pathologies contribute to the V/Q mismatch observed in COPD and models thereof. Also, little is known regarding how smoking cessation affects V/Q relationships after inflammation and airspace enlargement have become established. To this end, we have quantified V/Q on a per-voxel basis using single photon emission computed tomography (SPECT) in mouse models of COPD and lung obstruction. METHODS: Three distinct murine models were used to investigate the impact of different pathologies on V/Q, as measured by SPECT. Lipopolysaccharide (LPS) was used to produce neutrophilic inflammation, porcine pancreatic elastase (PPE) was used to produce emphysema, and long-term cigarette smoke (CS) exposure and cessation were used to investigate the combination of these pathologies. RESULTS: CS exposure resulted in an increase in mononuclear cells and neutrophils, an increase in airspace enlargement, and an increase in V/Q mismatching. The inflammation produced by LPS was more robust and predominantly neutrophilic, compared to that of cigarette smoke; nevertheless, inflammation alone caused V/Q mismatching similar to that seen with long-term CS exposure. The emphysematous lesions caused by PPE administration were also capable of causing V/Q mismatch in the absence of inflammation. Following CS cessation, inflammatory cell levels returned to those of controls and, similarly, V/Q measures returned to normal despite evidence of persistent mild airspace enlargement. CONCLUSIONS: Both robust inflammation and extensive airspace enlargement, on their own, were capable of producing V/Q mismatch. As CS cessation resulted in a return of V/Q mismatching and inflammatory cell counts to control levels, lung inflammation is likely a major contributor to V/Q mismatch observed in the cigarette smoke exposure model as well as in COPD patients. This return of V/Q mismatching to control values also took place in the presence of mild airspace enlargement, indicating that emphysematous lesions must be of a larger volume before affecting the lung significantly. Early smoking cessation is therefore critical before emphysema has an irreversible impact on gas exchange.


Asunto(s)
Modelos Animales de Enfermedad , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/patología , Cese del Hábito de Fumar , Fumar/patología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Neumonía/etiología , Neumonía/fisiopatología , Capacidad de Difusión Pulmonar/fisiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/fisiopatología , Ventilación Pulmonar/fisiología , Fumar/efectos adversos , Porcinos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda