Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Methods ; 19(10): 1208-1220, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618955

RESUMEN

Circular RNAs (circRNAs) are formed in all domains of life and via different mechanisms. There has been an explosion in the number of circRNA papers in recent years; however, as a relatively young field, circRNA biology has an urgent need for common experimental standards for isolating, analyzing, expressing and depleting circRNAs. Here we propose a set of guidelines for circRNA studies based on the authors' experience. This Perspective will specifically address the major class of circRNAs in Eukarya that are generated by a spliceosome-catalyzed back-splicing event. We hope that the implementation of best practice principles for circRNA research will help move the field forward and allow a better functional understanding of this fascinating group of RNAs.


Asunto(s)
ARN Circular , ARN , ARN/genética , ARN/metabolismo , Empalme del ARN
2.
Mol Cell ; 66(1): 22-37.e9, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28344082

RESUMEN

Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes.


Asunto(s)
Proliferación Celular , Desarrollo de Músculos , Proteínas Musculares/biosíntesis , Distrofia Muscular de Duchenne/metabolismo , Mioblastos Esqueléticos/metabolismo , Biosíntesis de Proteínas , ARN/metabolismo , Animales , Genotipo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Mioblastos Esqueléticos/patología , Sistemas de Lectura Abierta , Fenotipo , ARN/genética , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Interferencia de ARN , Empalme del ARN , ARN Circular , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Transfección
3.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834591

RESUMEN

Deregulation of RNA metabolism has emerged as one of the key events leading to the degeneration of motor neurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) disease. Indeed, mutations on RNA-binding proteins (RBPs) or on proteins involved in aspects of RNA metabolism account for the majority of familiar forms of ALS. In particular, the impact of the ALS-linked mutations of the RBP FUS on many aspects of RNA-related processes has been vastly investigated. FUS plays a pivotal role in splicing regulation and its mutations severely alter the exon composition of transcripts coding for proteins involved in neurogenesis, axon guidance, and synaptic activity. In this study, by using in vitro-derived human MNs, we investigate the effect of the P525L FUS mutation on non-canonical splicing events that leads to the formation of circular RNAs (circRNAs). We observed altered levels of circRNAs in FUSP525L MNs and a preferential binding of the mutant protein to introns flanking downregulated circRNAs and containing inverted Alu repeats. For a subset of circRNAs, FUSP525L also impacts their nuclear/cytoplasmic partitioning, confirming its involvement in different processes of RNA metabolism. Finally, we assess the potential of cytoplasmic circRNAs to act as miRNA sponges, with possible implications in ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , ARN Circular/metabolismo , Neuronas Motoras/metabolismo , Mutación , MicroARNs/metabolismo , Proteína FUS de Unión a ARN/genética
4.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30177572

RESUMEN

Myogenesis is a highly regulated process that involves the conversion of progenitor cells into multinucleated myofibers. Besides proteins and miRNAs, long noncoding RNAs (lncRNAs) have been shown to participate in myogenic regulatory circuitries. Here, we characterize a murine chromatin-associated muscle-specific lncRNA, Charme, which contributes to the robustness of the myogenic program in vitro and in vivo In myocytes, Charme depletion triggers the disassembly of a specific chromosomal domain and the downregulation of myogenic genes contained therein. Notably, several Charme-sensitive genes are associated with human cardiomyopathies and Charme depletion in mice results in a peculiar cardiac remodeling phenotype with changes in size, structure, and shape of the heart. Moreover, the existence of an orthologous transcript in human, regulating the same subset of target genes, suggests an important and evolutionarily conserved function for Charme Altogether, these data describe a new example of a chromatin-associated lncRNA regulating the robustness of skeletal and cardiac myogenesis.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/metabolismo , Remodelación Ventricular , Animales , Humanos , Ratones , Fibras Musculares Esqueléticas/patología , Miocitos Cardíacos/patología , ARN Largo no Codificante/genética
5.
EMBO Rep ; 21(6): e49942, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32337838

RESUMEN

Guanine-quadruplexes (G4) included in RNA molecules exert several functions in controlling gene expression at post-transcriptional level; however, the molecular mechanisms of G4-mediated regulation are still poorly understood. Here, we describe a regulatory circuitry operating in the early phases of murine muscle differentiation in which a long non-coding RNA (SMaRT) base pairs with a G4-containing mRNA (Mlx-γ) and represses its translation by counteracting the activity of the DHX36 RNA helicase. The time-restricted, specific effect of lnc-SMaRT on the translation of Mlx-γ isoform modulates the general subcellular localization of total MLX proteins, impacting on their transcriptional output and promoting proper myogenesis and mature myotube formation. Therefore, the circuitry made of lnc-SMaRT, Mlx-γ, and DHX36 not only plays an important role in the control of myogenesis but also unravels a molecular mechanism where G4 structures and G4 unwinding activities are regulated in living cells.


Asunto(s)
G-Cuádruplex , ARN Largo no Codificante , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas , Ratones , ARN Largo no Codificante/genética , ARN Mensajero/genética
6.
Mol Cell ; 53(3): 506-14, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24440503

RESUMEN

The muscle-specific long noncoding RNA linc-MD1 was shown to be expressed during early phases of muscle differentiation and to trigger the switch to later stages by acting as a sponge for miR-133 and miR-135. Notably, linc-MD1 is also the host transcript of miR-133b, and their biogenesis is mutually exclusive. Here, we describe that this alternative synthesis is controlled by the HuR protein, which favors linc-MD1 accumulation through its ability to bind linc-MD1 and repress Drosha cleavage. We show that HuR is under the repressive control of miR-133 and that the sponging activity of linc-MD1 consolidates HuR expression in a feedforward positive loop. Finally, we show that HuR also acts in the cytoplasm, reinforcing linc-MD1 sponge activity by cooperating for miRNA recruitment. An increase in miR-133 synthesis, mainly from the two unrelated miR-133a coding genomic loci, is likely to trigger the exit from this circuitry and progression to later differentiation stages.


Asunto(s)
Proteínas ELAV/fisiología , Desarrollo de Músculos/genética , ARN Largo no Codificante/fisiología , Animales , Diferenciación Celular , Línea Celular , Citoplasma/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Retroalimentación Fisiológica , Ratones , MicroARNs/análisis , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
7.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153123

RESUMEN

Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. Spermine oxidase (SMOX), a polyamine catabolic enzyme plays a critical role in muscle differentiation and the existence of a circRNA arising from SMOX gene has been recently identified. In this study, we evaluated the expression profile of circular and linear SMOX in both C2C12 differentiation and dexamethasone-induced myotubes atrophy. To validate our findings in vivo their expression levels were also tested in two murine models of amyotrophic lateral sclerosis: SOD1G93A and hFUS+/+, characterized by progressive muscle atrophy. During C2C12 differentiation, linear and circular SMOX show the same trend of expression. Interestingly, in atrophy circSMOX levels significantly increased compared to the physiological state, in both in vitro and in vivo models. Our study demonstrates that SMOX represents a new player in muscle physiopathology and provides a scientific basis for further investigation on circSMOX RNA as a possible new therapeutic target for the treatment of muscle atrophy.


Asunto(s)
Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , ARN Circular/fisiología , ARN Mensajero/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Diferenciación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/fisiología , ARN no Traducido/fisiología , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa-1/genética , Poliamino Oxidasa
8.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689888

RESUMEN

Circular RNAs (circRNAs) are a distinctive class of regulatory non-coding RNAs characterised by the presence of covalently closed ends. They are evolutionary conserved molecules, and although detected in different tissues, circRNAs resulted specifically enriched in the nervous system. Recent studies have shown that circRNAs are dynamically modulated during neuronal development and aging, that circRNAs are enriched at synaptic levels and resulted modulated after synaptic plasticity induction. This has suggested that circRNAs might play an important role in neuronal specification and activity. Despite the exact function of circRNAs is still poorly understood, emerging evidence indicates that circRNAs have important regulatory functions that might extensively contribute to the dynamic modulation of gene expression that supports neuronal pathways. More interestingly, deregulation of circRNAs expression has been linked with various pathological conditions. In this review, we describe current advances in the field of circRNA biogenesis and function in the nervous system both in physiological and in pathological conditions, and we specifically lay out their association with neurodegenerative diseases. Furthermore, we discuss the opportunity to exploit circRNAs for innovative therapeutic approaches and, due to their high stability, to use circRNAs as suitable biomarkers for diagnosis and disease progression.


Asunto(s)
Enfermedades Neurodegenerativas/genética , ARN Circular/genética , Animales , Biomarcadores/metabolismo , Humanos , Sistema Nervioso/embriología , Sistema Nervioso/patología , Enfermedades Neurodegenerativas/patología , Procesamiento Postranscripcional del ARN , ARN Circular/metabolismo
9.
Int J Mol Sci ; 19(2)2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443889

RESUMEN

Long noncoding RNAs (lncRNAs) are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Animales , Código de Histonas , Humanos , ARN Largo no Codificante/metabolismo
10.
EMBO J ; 31(24): 4502-10, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23232809

RESUMEN

microRNA abundance has been shown to depend on the amount of the microprocessor components or, in some cases, on specific auxiliary co-factors. In this paper, we show that the FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, associated with familial forms of Amyotrophic Lateral Sclerosis (ALS), contributes to the biogenesis of a specific subset of microRNAs. Among them, species with roles in neuronal function, differentiation and synaptogenesis were identified. We also show that FUS/TLS is recruited to chromatin at sites of their transcription and binds the corresponding pri-microRNAs. Moreover, FUS/TLS depletion leads to decreased Drosha level at the same chromatin loci. Limited FUS/TLS depletion leads to a reduced microRNA biogenesis and we suggest a possible link between FUS mutations affecting nuclear/cytoplasmic partitioning of the protein and altered neuronal microRNA biogenesis in ALS pathogenesis.


Asunto(s)
Cromatina/metabolismo , MicroARNs/biosíntesis , Neuronas/citología , Proteína FUS de Unión a ARN/metabolismo , Ribonucleasa III/metabolismo , Sinapsis/fisiología , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Humanos , Inmunoprecipitación , Neuronas/fisiología , Oligonucleótidos/genética , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sinapsis/genética
11.
Cell Rep ; 43(10): 114766, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39321023

RESUMEN

Functional studies of circular RNAs (circRNAs) began quite recently, and few data exist on their function in vivo. Here, we have generated a knockout (KO) mouse model to study circDlc1(2), a circRNA highly expressed in the prefrontal cortex and striatum. The loss of circDlc1(2) led to the upregulation of glutamatergic-response-associated genes in the striatal tissue, enhanced excitatory synaptic transmission in neuronal cultures, and hyperactivity and increased stereotypies in mice. Mechanistically, we found that circDlc1(2) physically interacts with some mRNAs, associated with glutamate receptor signaling (gluRNAs), and with miR-130b-5p, a translational regulator of these transcripts. Notably, differently from canonical microRNA (miRNA) "sponges," circDlc1(2) synergizes with miR-130b-5p to repress gluRNA expression. We found that circDlc1(2) is required to spatially control miR-130b-5p localization at synaptic regions where gluRNA is localized, indicating a different layer of regulation where circRNAs ensure robust control of gene expression via the correct subcellular compartmentalization of functionally linked interacting partners.

12.
Biochem Soc Trans ; 41(4): 844-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863142

RESUMEN

It is now becoming largely accepted that the non-coding portion of the genome, rather than its coding counterpart, is likely to account for the greater complexity of higher eukaryotes. Moreover, non-coding RNAs have been demonstrated to participate in regulatory circuitries that are crucial for development and differentiation. Whereas the biogenesis and function of small non-coding RNAs, particularly miRNAs (microRNAs), has been extensively clarified in many eukaryotic systems, very little is known about the long non-coding counterpart of the transcriptome. In the present review, we revise the current knowledge of how small non-coding RNAs and lncRNAs (long non-coding RNAs) impinge on circuitries controlling proper muscle differentiation and homoeostasis and how their biogenesis is regulated. Moreover, we provide new insights into an additional mechanism of post-transcriptional regulation mediated by lncRNAs, which, acting as miRNA 'sponges', have an impact on the distribution of miRNA molecules on their targets with features similar to those described for ceRNAs (competing endogenous RNAs).


Asunto(s)
Diferenciación Celular/genética , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , ARN no Traducido/genética , Humanos , MicroARNs/fisiología , Distrofia Muscular de Duchenne/patología
13.
Nat Struct Mol Biol ; 15(9): 902-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19172742

RESUMEN

microRNAs (miRNAs) are generated from long primary (pri-) RNA polymerase II (Pol II)-derived transcripts by two RNase III processing reactions: Drosha cleavage of nuclear pri-miRNAs and Dicer cleavage of cytoplasmic pre-miRNAs. Here we show that Drosha cleavage occurs during transcription acting on both independently transcribed and intron-encoded miRNAs. We also show that both 5'-3' and 3'-5' exonucleases associate with the sites where co-transcriptional Drosha cleavage occurs, promoting intron degradation before splicing. We finally demonstrate that miRNAs can also derive from 3' flanking transcripts of Pol II genes. Our results demonstrate that multiple miRNA-containing transcripts are co-transcriptionally cleaved during their synthesis and suggest that exonucleolytic degradation from Drosha cleavage sites in pre-mRNAs may influence the splicing and maturation of numerous mRNAs.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Células HeLa , Humanos , Intrones , MicroARNs/química , Proteínas Asociadas a Microtúbulos/genética , Conformación de Ácido Nucleico , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Transcripción Genética , Globinas beta/genética
14.
Pharmaceutics ; 14(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365115

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is globally poor. In more than 60% of AML patients, the PI3K/AKTs/mTOR signaling pathway is aberrantly activated because of oncogenic driver alterations and further enhanced by chemotherapy as a mechanism of drug resistance. Against this backdrop, very recently we have started a multidisciplinary research project focused on AKT1 as a pharmacological target to identify novel anti-AML agents. Indeed, the serendipitous finding of the in-house compound T187 as an AKT1 inhibitor has paved the way to the rational identification of new active small molecules, among which T126 has emerged as the most interesting compound with IC50 = 1.99 ± 0.11 µM, ligand efficiency of 0.35, and a clear effect at low micromolar concentrations on growth inhibition and induction of apoptosis in AML cells. The collected results together with preliminary SAR data strongly indicate that the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one derivative T126 is worthy of future biological experiments and medicinal chemistry efforts aimed at developing a novel chemical class of AKT1 inhibitors as anti-AML agents.

15.
Methods Mol Biol ; 2348: 371-383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34160818

RESUMEN

Circular RNAs (circRNAs) are covalently closed transcripts generated by back-splicing reaction. The lack of free ends endows these RNA molecules with high stability thus allowing them to accumulate in tissues and body fluids. They are widely expressed in most organisms, are modulated during development and display tissue-specific expression, resulting particularly enriched in the nervous system. Deregulation of circRNA expression has also been associated with several pathological conditions including neurological diseases and cancer.Here we present a Northern blot procedure that allows the analysis of the expression of bona fide circRNAs through the use of a digoxigenin-labeled RNA probe and the immunodetection of the signals.


Asunto(s)
Northern Blotting/métodos , Expresión Génica , ARN Circular , Humanos , Sondas ARN , ARN no Traducido
16.
iScience ; 24(12): 103504, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34934923

RESUMEN

CircRNAs belong to a family of RNA molecules which are conserved in evolution, have tissue-specific expression, and are abundant in neuronal cells. Here, we define several features of circ-Hdgfrp3 and describe interesting alterations occurring in motor neurons (MNs) carrying ALS-associated FUS mutations. Through a highly sensitive in situ approach we describe that circ-Hdgfrp3 traffics along neurites, while upon oxidative stress it is retained in the perinuclear region. While in wild-type stressed MNs, circ-Hdgfrp3 localizes in stress granules (SGs), in MNs carrying mutant FUS, a higher proportion of circ-Hdgfrp3 was trapped into cytoplasmic aggregates. Upon stress removal, circ-Hdgfrp3 was easily freed from SGs whereas it was less efficiently released from FUS-aggregates. We found that the human circ-Hdgfrp3 counterpart was also similarly associated to mutant FUS-aggregates in stressed neuronal cells. Overall, the alteration of circ-Hdgfrp3 trafficking adds a further layer of complexity to the role of FUS-aggregates in ALS disease.

17.
Commun Biol ; 4(1): 1025, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471224

RESUMEN

Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS.


Asunto(s)
Axones/metabolismo , Proteína 4 Similar a ELAV/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína FUS de Unión a ARN/genética , Animales , Línea Celular , Proteína 4 Similar a ELAV/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Mutación , Proteína FUS de Unión a ARN/metabolismo
18.
Cell Death Discov ; 7(1): 4, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431881

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, muscle atrophy and paralysis. To date, multiple panels of biomarkers have been described in ALS patients and murine models. Nevertheless, none of them has sufficient specificity and thus the molecular signature for ALS prognosis and progression remains to be elucidated. Here we overcome this limitation through a longitudinal study, analyzing serum levels of circulating miRNAs, stable molecules that are recently used as promising biomarkers for many types of human disorders, in ALS patients during the progression of the pathology. We performed next-generation sequencing (NGS) analysis and absolute RT quantification of serum samples of ALS patients and healthy controls. The expression levels of five selected miRNAs were quantitatively analyzed during disease progression in each patient and we demonstrated that high levels of miR-206, miR-133a and miR-151a-5p can predict a slower clinical decline of patient functionality. In particular, we found that miR-206 and miR-151a-5p serum levels were significantly up-regulated at the mild stage of ALS pathology, to decrease in the following moderate and severe stages, whereas the expression levels of miR-133a and miR-199a-5p remained low throughout the course of the disease, showing a diagnostic significance in moderate and severe stages for miR-133a and in mild and terminal ones for miR-199a-5p. Moreover, we found that miR-423-3p and 151a-5p were significantly downregulated respectively in mild and terminal stages of the disease. These data suggest that these miRNAs represent potential prognostic markers for ALS disease.

19.
Front Cell Dev Biol ; 8: 273, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435641

RESUMEN

The rapid advance of RNA sequencing technologies contributed to a deep understanding of transcriptome composition and has allowed the discovery of a large number of non-coding RNAs (ncRNAs). The ability of these RNA molecules to be engaged in intricate and dynamic interactions with proteins and nucleic acids led to a great expansion of gene expression regulation mechanisms. By this matter, ncRNAs contribute to the increase in regulatory complexity that becomes highly specific between tissues and cell types. Among the ncRNAs, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are especially abundant in nervous system and have been shown to be implicated in its development, plasticity and aging as well as in neurological disorders. This review provides an overview of how these two diverse classes of ncRNAs control cellular processes during nervous system development, physiology, and disease conditions with particular emphasis on neurodegenerative disorders. The use of ncRNAs as biomarkers, tools, or targets for therapeutic intervention in neurodegeneration are also discussed.

20.
Cell Rep ; 31(6): 107641, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32402287

RESUMEN

N6-methyladenosine (m6A) is an RNA modification well-known for its contribution to different processes controlling RNA metabolism, including splicing, stability, and translation of mRNA. Conversely, the role of m6A on the biogenesis and function of circular RNAs (circRNAs) has yet to be addressed. circRNAs belong to a class of covalently closed transcripts produced via a back-splicing reaction whereby a downstream 5' splice donor site fuses to an upstream 3' splice acceptor site. Starting from circ-ZNF609 as a study case, we discover that specific m6As control its accumulation and that METTL3 and YTHDC1 are required to direct the back-splicing reaction. This feature is shared with other circRNAs because we find a significant direct correlation among METTL3 requirement, YTHDC1 binding, and the ability of m6A exons to undergo back-splicing. Finally, because circ-ZNF609 displays the ability to be translated, we show that m6A modifications, through recognition by YTHDF3 and eIF4G2, modulate its translation.


Asunto(s)
Adenosina/análogos & derivados , Metiltransferasas/metabolismo , ARN Circular/metabolismo , Adenosina/metabolismo , Empalme Alternativo , Preescolar , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas del Tejido Nervioso , Factores de Empalme de ARN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda