Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Antimicrob Agents Chemother ; 66(6): e0237321, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35604214

RESUMEN

Infection with pathogenic free-living amoebae, including Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris, can lead to life-threatening illnesses, primarily because of catastrophic central nervous system involvement. Efficacious treatment options for these infections are lacking, and the mortality rate due to infection is high. Previously, we evaluated the N. fowleri glucokinase (NfGlck) as a potential target for therapeutic intervention, as glucose metabolism is critical for in vitro viability. Here, we extended these studies to the glucokinases from two other pathogenic free-living amoebae, including Acanthamoeba castellanii (AcGlck) and B. mandrillaris (BmGlck). While these enzymes are similar (49.3% identical at the amino acid level), they have distinct kinetic properties that distinguish them from each other. For ATP, AcGlck and BmGlck have apparent Km values of 472.5 and 41.0 µM, while Homo sapiens Glck (HsGlck) has a value of 310 µM. Both parasite enzymes also have a higher apparent affinity for glucose than the human counterpart, with apparent Km values of 45.9 µM (AcGlck) and 124 µM (BmGlck) compared to ~8 mM for HsGlck. Additionally, AcGlck and BmGlck differ from each other and other Glcks in their sensitivity to small molecule inhibitors, suggesting that inhibitors with pan-amoebic activity could be challenging to generate.


Asunto(s)
Acanthamoeba , Amebiasis , Amoeba , Balamuthia mandrillaris , Naegleria fowleri , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología , Glucoquinasa , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda