Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Vasc Surg Cases Innov Tech ; 3(3): 168-170, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29349411

RESUMEN

A 48-year-old woman suffering from Takayasu arteritis presented with middle aortic syndrome consisting of abdominal pain, refractory hypertension with pulmonary edema and pleural effusions, and lower limb ischemia. She failed to improve with high-dose steroid therapy and underwent endovascular stenting of two severe stenoses in the supraceliac and infrarenal aorta. Her symptoms resolved and hypertension improved after the procedure.

2.
Mol Cell Biol ; 31(14): 2774-86, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21606198

RESUMEN

In multiple tumor types, activation of the transcription factor NF-κB increases the resistance of tumor cells to anticancer therapies and contributes to tumor progression. Genotoxic stress induced by chemotherapy or radiation therapy triggers the ATM-dependent translocation of NF-κB essential modifier (NEMO), also designated IκB kinase γ (IKKγ), from the nucleus to the cytosol, resulting in IκB kinase activation by mechanisms not yet fully understood. RIP1 has been implicated in this response and found to be modified in cells with damaged DNA; however, the nature of the RIP1 modification and its precise role in the pathway remain unclear. Here, we show that DNA damage stimulates the formation of a cytosolic complex containing ATM, NEMO (IKKγ), RIP1, and TAK1. We find that RIP1 is modified by SUMO-1 and ubiquitin in response to DNA damage and demonstrate that modified RIP1 is required for NF-κB activation and tumor cell survival. We show that ATM activates TAK1 in a manner dependent on RIP1 and NEMO. We also reveal TAK1 as a central mediator of the alternative DNA damage response pathway mediated by the p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 (MAPKAP-2) kinases. These findings have translational implications and reveal RIP1 and TAK1 as potential therapeutic targets in chemoresistance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Antibióticos Antineoplásicos/metabolismo , Antineoplásicos Fitogénicos/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Doxorrubicina/metabolismo , Etopósido/metabolismo , Proteínas Activadoras de GTPasa/genética , Silenciador del Gen , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Complejos Multiproteicos/metabolismo , FN-kappa B/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda