Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chem Res Toxicol ; 28(9): 1747-52, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26317231

RESUMEN

Drug-induced toxicity is a leading cause of drug withdrawal from clinical development and clinical use and represents a major impediment to the development of new drugs. The mechanisms underlying drug-induced toxicities are varied; however, metabolic bioactivation to form reactive metabolites has been identified as a major contributor.1,2 These electrophilic species can covalently modify important biological macromolecules and thereby increase the risk of adverse drug reactions or idiosyncratic toxicity. Consequently, screening compounds for their propensity to form reactive metabolites has become an integral part of drug discovery programs. This screening process typically involves identification of structural alerts as well as the generation of reactive metabolites in vitro in subcellular hepatic fractions, followed by trapping the reactive species with nucleophiles and characterization via LC-MS. This article presents evidence for the bioactivation of a series of aminopyrazole derivatives via LC-MS detection of glutathione ethyl ester-trapped reactive intermediates formed in human liver microsomal incubations. These results indicate that the aminopyrazole motif, within specific contexts, may be considered a new structural alert for the potential formation of reactive metabolites.


Asunto(s)
Glutatión/química , Pirazoles/química , Activación Metabólica , Ésteres/química , Humanos
2.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37557181

RESUMEN

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Histonas/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Transducción de Señal , Línea Celular Tumoral
3.
J Am Chem Soc ; 134(10): 4721-30, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22380794

RESUMEN

A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore's usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H(2)O(2)-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially "light up" in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.


Asunto(s)
Microscopía Fluorescente/métodos , Óxidos de Nitrógeno/metabolismo , Estrés Oxidativo , Animales , Células CHO , Cricetinae , Cricetulus , Fotones , Espectrofotometría Ultravioleta
4.
Struct Dyn ; 6(6): 064701, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31768400

RESUMEN

The WD40-repeat protein WDR5 scaffolds various epigenetic writers and is a critical component of the mammalian SET/MLL histone methyltransferase complex. Dysregulation of the MLL1 catalytic function is associated with mixed-lineage leukemia, and antagonism of the WDR5-MLL1 interaction by small molecules has been proposed as a therapeutic strategy for MLL-rearranged cancers. Small molecule binders of the "WIN" site of WDR5 that cause displacement from chromatin have been additionally implicated to be of broader use in cancer treatment. In this study, a fragment screen with Surface Plasmon Resonance (SPR) was used to identify a highly ligand-efficient imidazole-containing compound that is bound in the WIN site. The subsequent medicinal chemistry campaign-guided by a suite of high-resolution cocrystal structures with WDR5-progressed the initial hit to a low micromolar binder. One outcome from this study is a moiety that substitutes well for the side chain of arginine; a tripeptide containing one such substitution was resolved in a high resolution structure (1.5 Å) with a binding mode analogous to the native tripeptide. SPR furthermore indicates a similar residence time (k d = ∼0.06 s-1) for these two analogs. This novel scaffold therefore represents a possible means to overcome the potential permeability issues of WDR5 ligands that possess highly basic groups like guanidine. The series reported here furthers the understanding of the WDR5 WIN site and functions as a starting point for the development of more potent WDR5 inhibitors that may serve as cancer therapeutics.

5.
J Org Chem ; 73(17): 6763-71, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18683980

RESUMEN

The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.


Asunto(s)
Algoritmos , Óxidos N-Cíclicos/química , Modelos Teóricos , Acetonitrilos/química , Compuestos Aza/química , Electroquímica , Isoindoles/química , Oxidación-Reducción , Piperidinas/química , Pirrolidinas/química
6.
Free Radic Biol Med ; 128: 97-110, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29567391

RESUMEN

Here we describe new fluorescent probes based on fluorescein and rhodamine that provide reversible, real-time insight into cellular redox status. The new probes incorporate bio-imaging relevant fluorophores derived from fluorescein and rhodamine linked with stable nitroxide radicals such that they cannot be cleaved, either spontaneously or enzymatically by cellular processes. Overall fluorescence emission is determined by reversible reduction and oxidation, hence the steady state emission intensity reflects the balance between redox potentials of critical redox couples within the cell. The permanent positive charge on the rhodamine-based probes leads to their rapid localisation within mitochondria in cells. Reduction and oxidation also leads to marked changes in the fluorophore lifetime, enabling monitoring by fluorescence lifetime imaging microscopy. Finally, we demonstrate that administration of a methyl ester version of the rhodamine-based probe can be used at concentrations as low as 5 nM to generate a readily detected response to redox stress within cells as analysed by flow cytometry.


Asunto(s)
Antioxidantes/química , Neoplasias Colorrectales/metabolismo , Fibroblastos/metabolismo , Colorantes Fluorescentes/química , Mitocondrias/metabolismo , Imagen Molecular/métodos , Óxidos de Nitrógeno/química , Antioxidantes/metabolismo , Células Cultivadas , Neoplasias Colorrectales/patología , Fibroblastos/citología , Colorantes Fluorescentes/metabolismo , Humanos , Microscopía Fluorescente , Mitocondrias/patología , Óxidos de Nitrógeno/metabolismo , Oxidación-Reducción
7.
Free Radic Biol Med ; 49(1): 67-76, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20350596

RESUMEN

Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders. Sensitive quantification of these changes has been developed using a novel fluorescent probe containing a redox-sensitive nitroxide moiety. As well as being able to selectively detect the superoxide radical in vitro, this method can measure overall changes to the cellular redox environment using flow cytometry on the basis of nitroxide reduction. The reversible nature of the probe's detection mechanism offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time.


Asunto(s)
Fibroblastos/metabolismo , Colorantes Fluorescentes/síntesis química , Óxidos de Nitrógeno/síntesis química , Oxidación-Reducción , Biomarcadores , Línea Celular Transformada , Separación Celular , Citometría de Flujo , Humanos , Microscopía Fluorescente
8.
J Colloid Interface Sci ; 335(1): 62-9, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19419734

RESUMEN

Stable concentrated aqueous dispersions of monodisperse gold nanoparticles were prepared using diethylaminoethyl-dextran as reductant and stabilizer. The effectiveness of dextran as reducing agent was strongly affected by the pH. In alkaline solutions, the Au(III) species were rapidly and completely reduced, yielding stable dispersions of spherical uniform gold nanoparticles. Their modal diameter could be adjusted from 18 to 40 nm by varying the pH, temperature, and the Au3+/dextran ratio. In contrast, under acidic conditions (pH approximately 4.0) the reduction was very slow, favoring the formation of large gold crystals of other shapes. A general mechanism explaining the reducing and stabilizing actions of polysaccharides in general, and of diethylaminoethyl-dextran in particular, is proposed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda