Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nature ; 608(7922): 303-309, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948714

RESUMEN

In many disciplines, states that emerge in open systems far from equilibrium are determined by a few global parameters1,2. These states can often mimic thermodynamic equilibrium, a classic example being the oscillation threshold of a laser3 that resembles a phase transition in condensed matter. However, many classes of states cannot form spontaneously in dissipative systems, and this is the case for cavity solitons2 that generally need to be induced by external perturbations, as in the case of optical memories4,5. In the past decade, these highly localized states have enabled important advancements in microresonator-based optical frequency combs6,7. However, the very advantages that make cavity solitons attractive for memories-their inability to form spontaneously from noise-have created fundamental challenges. As sources, microcombs require spontaneous and reliable initiation into a desired state that is intrinsically robust8-20. Here we show that the slow non-linearities of a free-running microresonator-filtered fibre laser21 can transform temporal cavity solitons into the system's dominant attractor. This phenomenon leads to reliable self-starting oscillation of microcavity solitons that are naturally robust to perturbations, recovering spontaneously even after complete disruption. These emerge repeatably and controllably into a large region of the global system parameter space in which specific states, highly stable over long timeframes, can be achieved.

2.
Nature ; 589(7840): 44-51, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408378

RESUMEN

Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis1-7. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (1012) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition.

3.
Opt Express ; 32(12): 21783-21794, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859524

RESUMEN

We study the interaction of a laser cavity-soliton microcomb with an externally coupled, co-propagating tunable CW pump, observing parametric Kerr interactions which lead to the formation of both a cross-phase modulation and a four-wave mixing replica of the laser cavity-soliton. We compare and explain the dependence of the microcomb spectra from both the cavity-soliton and pump parameters, demonstrating the ability to adjust the microcomb externally without breaking or interfering with the soliton state. The parametric nature of the process agrees with numerical simulations. The parametric extended state maintains the typical robustness of laser-cavity solitons.

4.
Opt Express ; 32(7): 11281-11295, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570979

RESUMEN

We report a dual-polarization radio frequency (RF) channelizer based on microcombs. Two high-Q micro-ring resonators (MRRs) with slightly different free spectral ranges (FSRs) are used: one MRR is pumped to yield soliton crystal microcombs ("active"), and the other MRR is used as a "passive" periodic optical filter supporting dual-polarization operation to slice the RF spectrum. With the tailored mismatch between the FSRs of the active and passive MRRs, wideband RF spectra can be channelized into multiple segments featuring digital-compatible bandwidths via the Vernier effect. Due to the use of dual-polarization states, the number of channelized spectral segments, and thus the RF instantaneous bandwidth (with a certain spectral resolution), can be doubled. In our experiments, we used 20 microcomb lines with ∼ 49 GHz FSR to achieve 20 channels for each polarization, with high RF spectra slicing resolutions at 144 MHz (TE) and 163 MHz (TM), respectively; achieving an instantaneous RF operation bandwidth of 3.1 GHz (TE) and 2.2 GHz (TM). Our approach paves the path towards monolithically integrated photonic RF receivers (the key components - active and passive MRRs are all fabricated on the same platform) with reduced complexity, size, and unprecedented performance, which is important for wide RF applications with digital-compatible signal detection.

5.
Nature ; 624(7991): 256-257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092904
6.
Opt Express ; 31(23): 37749-37762, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017898

RESUMEN

Soliton crystals are a novel form of microcomb, with relatively high conversion efficiency, good thermal robustness, and simple initiation among the methods to generate them. Soliton crystals can be easily generated in microring resonators with an appropriate mode-crossing. However, fabrication defects can significantly affect the mode-crossing placement and strength in devices. To enable soliton crystal states to be harnessed for a broader range of microcomb applications, we need a better understanding of the link between mode-crossing properties and the desired soliton crystal properties. Here, we investigate how to generate the same soliton crystal state in two different microrings, how changes in microring temperature change the mode-crossing properties, and how mode-crossing properties affect the generation of our desired soliton crystal state. We find that temperature affects the mode-crossing position in these rings but without major changes in the mode-crossing strength. We find that our wanted state can be generated over a device temperature range of 25 ∘C, with different mode-crossing properties, and is insensitive to the precise mode-crossing position between resonances.

7.
Nature ; 546(7660): 622-626, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28658228

RESUMEN

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

8.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139613

RESUMEN

The engineering of thermo-optic effects has found broad applications in integrated photonic devices, facilitating efficient light manipulation to achieve various functionalities. Here, we perform both an experimental characterization and a theoretical analysis of these effects in integrated microring resonators made from high-index doped silica, which have had many applications in integrated photonics and nonlinear optics. By fitting the experimental results with theory, we obtain fundamental parameters that characterize their thermo-optic performance, including the thermo-optic coefficient, the efficiency of the optically induced thermo-optic process, and the thermal conductivity. The characteristics of these parameters are compared to those of other materials commonly used for integrated photonic platforms, such as silicon, silicon nitride, and silica. These results offer a comprehensive insight into the thermo-optic properties of doped silica-based devices. Understanding these properties is essential for efficiently controlling and engineering them in many practical applications.

9.
Opt Express ; 30(22): 39816-39825, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298924

RESUMEN

Laser cavity-soliton microcombs are robust optical pulsed sources, usually implemented with a microresonator-filtered fibre laser. In such a configuration, a nonlinear microcavity converts the narrowband pulse resulting from bandwidth-limited amplification to a background-free broadband microcomb. Here, we theoretically and experimentally study the soliton conversion efficiency between the narrowband input pulse and the two outputs of a four-port integrated microcavity, namely the 'Drop' and 'Through' ports. We simultaneously measure on-chip, single-soliton conversion efficiencies of 45% and 25% for the two broadband comb outputs at the 'Drop' and 'Through' ports of a 48.9 GHz free-spectral range micro-ring resonator, obtaining a total conversion efficiency of 72%.

10.
Opt Lett ; 46(7): 1574-1577, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793489

RESUMEN

We report an all-optical radio-frequency (RF) spectrum analyzer with a bandwidth greater than 5 THz, based on a 50 cm long spiral waveguide in a CMOS-compatible high-index doped silica platform. By carefully mapping out the dispersion profile of the waveguides for different thicknesses, we identify the optimal design to achieve near-zero dispersion in the C-band. To demonstrate the capability of the RF spectrum analyzer, we measure the optical output of a femtosecond fiber laser with an ultrafast optical RF spectrum in the terahertz regime.

11.
Small ; 16(16): e1906563, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32159916

RESUMEN

Layered 2D graphene oxide (GO) films are integrated with micro-ring resonators (MRRs) to experimentally demonstrate enhanced nonlinear optics. Both uniformly coated (1-5 layers) and patterned (10-50 layers) GO films are integrated on complementary-metal-oxide-semiconductor (CMOS)-compatible doped silica MRRs using a large-area, transfer-free, layer-by-layer GO coating method with precise control of the film thickness. The patterned devices further employ photolithography and lift-off processes to enable precise control of the film placement and coating length. Four-wave-mixing (FWM) measurements for different pump powers and resonant wavelengths show a significant improvement in efficiency of ≈7.6 dB for a uniformly coated device with 1 GO layer and ≈10.3 dB for a patterned device with 50 GO layers. The measurements agree well with theory, with the enhancement in FWM efficiency resulting from the high Kerr nonlinearity and low loss of the GO films combined with the strong light-matter interaction within the MRRs. The dependence of GO's third-order nonlinearity on layer number and pump power is also extracted from the FWM measurements, revealing interesting physical insights about the evolution of the GO films from 2D monolayers to quasi bulk-like behavior. These results confirm the high nonlinear optical performance of integrated photonic resonators incorporated with 2D layered GO films.

12.
Opt Lett ; 45(18): 5008-5011, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932439

RESUMEN

We demonstrate coherent supercontinuum generation spanning over an octave from a silicon germanium-on-silicon waveguide using ∼200fs pulses at a wavelength of 4 µm. The waveguide is engineered to provide low all-normal dispersion in the TM polarization. We validate the coherence of the generated supercontinuum via simulations, with a high degree of coherence across the entire spectrum. Such a generated supercontinuum could lend itself to pulse compression down to 22 fs.

13.
Opt Express ; 27(18): 25251-25264, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31510400

RESUMEN

The ability of laser systems to emit different adjustable temporal pulse profiles and patterns is desirable for a broad range of applications. While passive mode-locking techniques have been widely employed for the realization of ultrafast laser pulses with mainly Gaussian or hyperbolic secant temporal profiles, the generation of versatile pulse shapes in a controllable way and from a single laser system remains a challenge. Here we show that a nonlinear amplifying loop mirror (NALM) laser with a bandwidth-limiting filter (in a nearly dispersion-free arrangement) and a short integrated nonlinear waveguide enables the realization and distinct control of multiple mode-locked pulsing regimes (e.g., Gaussian pulses, square waves, fast sinusoidal-like oscillations) with repetition rates that are variable from the fundamental (7.63 MHz) through its 205th harmonic (1.56 GHz). These dynamics are described by a newly developed and compact theoretical model, which well agrees with our experimental results. It attributes the control of emission regimes to the change of the NALM response function that is achieved by the adjustable interplay between the NALM amplification and the nonlinearity. In contrast to previous square wave emissions, we experimentally observed that an Ikeda instability was responsible for square wave generation. The presented approach enables laser systems that can be universally applied to various applications, e.g., spectroscopy, ultrafast signal processing and generation of non-classical light states.

14.
Phys Rev Lett ; 122(12): 120501, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30978097

RESUMEN

Entanglement witnesses are operators that are crucial for confirming the generation of specific quantum systems, such as multipartite and high-dimensional states. For this reason, many witnesses have been theoretically derived which commonly focus on establishing tight bounds and exhibit mathematical compactness as well as symmetry properties similar to that of the quantum state. However, for increasingly complex quantum systems, established witnesses have lacked experimental achievability, as it has become progressively more challenging to design the corresponding experiments. Here, we present a universal approach to derive entanglement witnesses that are capable of detecting the presence of any targeted complex pure quantum system and that can be customized towards experimental restrictions or accessible measurement settings. Using this technique, we derive experimentally optimized witnesses that are able to detect multipartite d-level cluster states, and that require only two measurement settings. We present explicit examples for customizing the witness operators given different realistic experimental restrictions, including witnesses for high-dimensional entanglement that use only two-dimensional projection measurements. Our work enables us to confirm the presence of probed quantum states using methods that are compatible with practical experimental realizations in different quantum platforms.

15.
Opt Express ; 26(3): 2569-2583, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401795

RESUMEN

We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

16.
Opt Express ; 25(16): 18940-18949, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041085

RESUMEN

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

17.
Opt Lett ; 42(17): 3407-3410, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957049

RESUMEN

We propose a scheme for bifurcation control in micro-cavities based on the interplay between the ultrafast Kerr effect and a slow nonlinearity, such as thermo-optical, free-carriers-induced, or opto-mechanical one. We demonstrate that Hopf bifurcations can be efficiently controlled with a low energy signal via four-wave mixing. Our results show that new strategies are possible for designing efficient micro-cavity-based oscillators and sensors. Moreover, they provide new understanding of the effect of coherent wave mixing in the thermal stability regions of optical micro-cavities, fundamental for micro-resonator-based applications in communications, sensing, and metrology, including optical micro-combs.

18.
Opt Lett ; 42(21): 4391-4394, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088171

RESUMEN

We investigate single-channel and multichannel phase-sensitive amplification (PSA) in a highly nonlinear, CMOS-compatible spiral waveguide with ultralow linear and negligible nonlinear losses. We achieve a net gain of 10.4 dB and an extinction ratio of 24.6 dB for single-channel operation, as well as a 5 dB gain and a 15 dB extinction ratio spanning over a bandwidth of 24 nm for multiple-channel operation. In addition, we derive a simple analytic solution that enables calculating the maximum phase-sensitive gain in any Kerr medium featuring linear and nonlinear losses. These results not only give a clear guideline for designing PSA-based amplifiers but also show that it is possible to implement both optical regeneration and amplification in a single on-chip device.

19.
Opt Express ; 23(17): 22087-97, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26368182

RESUMEN

We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

20.
Opt Express ; 22(18): 21488-98, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25321527

RESUMEN

We report an integrated all-optical radio frequency spectrum analyzer based on a ~4 cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahigh repetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other techniques.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda