Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Cell ; 82(20): 3826-3839.e9, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36113481

RESUMEN

Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.


Asunto(s)
ARN Polimerasa I , Factores de Transcripción , Humanos , Ratones , Animales , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Ribosómico/genética , Transcripción Genética , ADN Ribosómico/genética , ARN , Cromatina
2.
PLoS Genet ; 18(2): e1009644, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35139074

RESUMEN

Transcription of the ~200 mouse and human ribosomal RNA genes (rDNA) by RNA Polymerase I (RPI/PolR1) accounts for 80% of total cellular RNA, around 35% of all nuclear RNA synthesis, and determines the cytoplasmic ribosome complement. It is therefore a major factor controlling cell growth and its misfunction has been implicated in hypertrophic and developmental disorders. Activation of each rDNA repeat requires nucleosome replacement by the architectural multi-HMGbox factor UBTF to create a 15.7 kbp nucleosome free region (NFR). Formation of this NFR is also essential for recruitment of the TBP-TAFI factor SL1 and for preinitiation complex (PIC) formation at the gene and enhancer-associated promoters of the rDNA. However, these promoters show little sequence commonality and neither UBTF nor SL1 display significant DNA sequence binding specificity, making what drives PIC formation a mystery. Here we show that cooperation between SL1 and the longer UBTF1 splice variant generates the specificity required for rDNA promoter recognition in cell. We find that conditional deletion of the TAF1B subunit of SL1 causes a striking depletion of UBTF at both rDNA promoters but not elsewhere across the rDNA. We also find that while both UBTF1 and -2 variants bind throughout the rDNA NFR, only UBTF1 is present with SL1 at the promoters. The data strongly suggest an induced-fit model of RPI promoter recognition in which UBTF1 plays an architectural role. Interestingly, a recurrent UBTF-E210K mutation and the cause of a pediatric neurodegeneration syndrome provides indirect support for this model. E210K knock-in cells show enhanced levels of the UBTF1 splice variant and a concomitant increase in active rDNA copies. In contrast, they also display reduced rDNA transcription and promoter recruitment of SL1. We suggest the underlying cause of the UBTF-E210K syndrome is therefore a reduction in cooperative UBTF1-SL1 promoter recruitment that may be partially compensated by enhanced rDNA activation.


Asunto(s)
Proteínas del Complejo de Iniciación de Transcripción Pol1 , ARN Polimerasa I , Animales , Niño , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , Ratones , Nucleosomas , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa I/genética , ARN Ribosómico/genética , Transcripción Genética
3.
J Biol Chem ; 299(10): 105203, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660911

RESUMEN

Transcription/processing of the ribosomal RNA (rRNA) precursor, as part of ribosome biosynthesis, is intensively studied and characterized in eukaryotic cells. Here, we constructed shRNA-based mouse cell lines partially silenced for the Upstream Binding Factor UBF, the master regulator of rRNA transcription and organizer of open rDNA chromatin. Full Ubf silencing in vivo is not viable, and these new tools allow further characterization of rRNA transcription and its coordination with cellular signaling. shUBF cells display cell cycle G1 delay and reduced 47S rRNA precursor and 28S rRNA at baseline and serum-challenged conditions. Growth-related mTOR signaling is downregulated with the fractions of active phospho-S6 Kinase and pEIF4E translation initiation factor reduced, similar to phosphorylated cell cycle regulator retinoblastoma, pRB, positive regulator of UBF availability/rRNA transcription. Additionally, we find transcription-competent pUBF (Ser484) severely restricted and its interacting initiation factor RRN3 reduced and responsive to extracellular cues. Furthermore, fractional UBF occupancy on the rDNA unit is decreased in shUBF, and expression of major factors involved in different aspects of rRNA transcription is severely downregulated by UBF depletion. Finally, we observe reduced RNA Pol1 occupancy over rDNA promoter sequences and identified unexpected regulation of RNA Pol1 expression, relative to serum availability and under UBF silencing, suggesting that regulation of rRNA transcription may not be restricted to modulation of Pol1 promoter binding/elongation rate. Overall, this work reveals that UBF depletion has a critical downstream and upstream impact on the whole network orchestrating rRNA transcription in mammalian cells.

4.
J Cell Physiol ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764354

RESUMEN

The tumor suppressor p14/19ARF regulates ribosomal RNA (rRNA) synthesis by controlling the nucleolar localization of Transcription Termination Factor 1 (TTF1). However, the role played by TTF1 in regulating the rRNA genes and in potentially controlling growth has remained unclear. We now show that TTF1 expression regulates cell growth by determining the cellular complement of ribosomes. Unexpectedly, it achieves this by acting as a "roadblock" to synthesis of the noncoding LncRNA and pRNA that we show are generated from the "Spacer Promoter" duplications present upstream of the 47S pre-rRNA promoter on the mouse and human ribosomal RNA genes. Unexpectedly, the endogenous generation of these noncoding RNAs does not induce CpG methylation or gene silencing. Rather, it acts in cis to suppress 47S preinitiation complex formation and hence de novo pre-rRNA synthesis by a mechanism reminiscent of promoter interference or occlusion. Taken together, our data delineate a pathway from p19ARF to cell growth suppression via the regulation of ribosome biogenesis by noncoding RNAs and validate a key cellular growth law in mammalian cells.

5.
Hum Mol Genet ; 27(4): 691-705, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29300972

RESUMEN

UBTF (upstream binding transcription factor) exists as two isoforms; UBTF1 regulates rRNA transcription by RNA polymerase 1, whereas UBTF2 regulates mRNA transcription by RNA polymerase 2. Herein, we describe 4 patients with very similar patterns of neuroregression due to recurrent de novo mutations in UBTF (GRCh37/hg19, NC_000017.10: g.42290219C > T, NM_014233.3: c.628G > A) resulting in the same amino acid change in both UBTF1 and UBTF2 (p.Glu210Lys [p.E210K]). Disease onset in our cohort was at 2.5 to 3 years and characterized by slow progression of global motor, cognitive and behavioral dysfunction. Notable early features included hypotonia with a floppy gait, high-pitched dysarthria and hyperactivity. Later features included aphasia, dystonia, and spasticity. Speech and ambulatory ability were lost by the early teens. Magnetic resonance imaging showed progressive generalized cerebral atrophy (supratentorial > infratentorial) with involvement of both gray and white matter. Patient fibroblasts showed normal levels of UBTF transcripts, increased expression of pre-rRNA and 18S rRNA, nucleolar abnormalities, markedly increased numbers of DNA breaks, defective cell-cycle progression, and apoptosis. Expression of mutant human UBTF1 in Drosophila neurons was lethal. Although no loss-of-function variants are reported in the Exome Aggregation Consortium (ExAC) database and Ubtf-/- is early embryonic lethal in mice, Ubtf+/- mice displayed only mild motor and behavioral dysfunction in adulthood. Our data underscore the importance of including UBTF E210K in the differential diagnosis of neuroregression and suggest that mainly gain-of-function mechanisms contribute to the pathogenesis of the UBTF E210K neuroregression syndrome.


Asunto(s)
Mutación Missense/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Preescolar , Disartria/genética , Femenino , Ataxia de la Marcha/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Hipotonía Muscular/genética , Linaje , ARN Ribosómico 18S/genética
6.
Chromosome Res ; 27(1-2): 31-40, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617621

RESUMEN

The rRNA genes of mouse and human encode the three major RNAs of the ribosome and as such are essential for growth and development. These genes are present in high copy numbers and arranged as direct repeats at the Nucleolar Organizer Regions on multiple chromosomes. Not all the rRNA genes are transcriptionally active, but the molecular mechanisms that determine activity are complex and still poorly understood. Recent studies applying a novel Deconvolution Chromatin Immunoprecipitation (DChIP-Seq) technique in conjunction with conditional gene inactivation provide new insights into the structure of the active rRNA genes and question previous assumptions on the role of chromatin and histone modifications. We suggest an alternative model for the active rRNA gene chromatin and discuss how this structure is determined and maintained.


Asunto(s)
Cromatina/genética , Genes de ARNr , Animales , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Ratones , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Transcripción Genética , Activación Transcripcional
7.
PLoS Genet ; 13(7): e1006899, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28715449

RESUMEN

Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin and place the Enhancer Boundary Complex as the likely entry point for chromatin remodelling complexes.


Asunto(s)
Genes de ARNr , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Polimerasa I/metabolismo , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Femenino , Eliminación de Gen , Silenciador del Gen , Sitios Genéticos , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Embarazo , ARN Polimerasa I/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Yale J Biol Med ; 92(3): 385-396, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31543703

RESUMEN

The p14/p19ARF (ARF) tumor suppressor provides an important link in the activation of p53 (TP53) by inhibiting its targeted degradation via the E3 ligases MDM2/HDM2. However, ARF also limits tumor growth by directly inhibiting ribosomal RNA synthesis and processing. Initial studies of the ARF tumor suppressor were compounded by overlap between the INK4A and ARF genes encoded by the CDKN2A locus, but mouse models of pure ARF-loss and its inactivation in human cancers identified it as a distinct tumor suppressor even in the absence of p53. We previously demonstrated that both human and mouse ARF interact with Transcription Termination Factor 1 (TTF1, TTF-I), an essential factor implicated in transcription termination and silencing of the ribosomal RNA genes. Accumulation of ARF upon oncogenic stress was shown to inhibit ribosomal RNA synthesis by depleting nucleolar TTF1. Here we have mapped the functional nucleolar localization sequences (NoLS) of mouse TTF1 and the sequences responsible for interaction with ARF. We find that both sequences lie within the 25 amino acid N-terminal repeats of TTF1. Nucleolar localization depends on semi-redundant lysine-arginine motifs in each repeat and to a minor extent on binding to target DNA sequences by the Myb homology domain of TTF1. While nucleolar localization of TTF1 predominantly correlates with its interaction with ARF, NoLS activity and ARF binding are mediated by distinct sequences within each N-terminal repeat. The data suggest that the N-terminal repeats of mouse TTF1, and by analogy those of human TTF1, cooperate to mediate both nucleolar localization and ARF binding.


Asunto(s)
Nucléolo Celular/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Señales de Clasificación de Proteína , Secuencias Repetidas Terminales , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad
9.
Genome Res ; 25(2): 201-12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25452314

RESUMEN

Mechanisms to coordinate programs of highly transcribed genes required for cellular homeostasis and growth are unclear. Upstream binding transcription factor (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. Here, we report that the two isoforms of UBTF (UBTF1/2) are also enriched at highly expressed Pol II-transcribed genes throughout the mouse genome. Further analysis of UBTF1/2 DNA binding in immortalized human epithelial cells and their isogenically matched transformed counterparts reveals an additional repertoire of UBTF1/2-bound genes involved in the regulation of cell cycle checkpoints and DNA damage response. As proof of a functional role for UBTF1/2 in regulating Pol II transcription, we demonstrate that UBTF1/2 is required for recruiting Pol II to the highly transcribed histone gene clusters and for their optimal expression. Intriguingly, lack of UBTF1/2 does not affect chromatin marks or nucleosome density at histone genes. Instead, it results in increased accessibility of the histone promoters and transcribed regions to micrococcal nuclease, implicating UBTF1/2 in mediating DNA accessibility. Unexpectedly, UBTF2, which does not function in Pol I transcription, is sufficient to regulate histone gene expression in the absence of UBTF1. Moreover, depletion of UBTF1/2 and subsequent reduction in histone gene expression is associated with DNA damage and genomic instability independent of Pol I transcription. Thus, we have uncovered a novel role for UBTF1 and UBTF2 in maintaining genome stability through coordinating the expression of highly transcribed Pol I (UBTF1 activity) and Pol II genes (UBTF2 activity).


Asunto(s)
Regulación de la Expresión Génica , Inestabilidad Genómica , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa I/genética , Transcripción Genética , Animales , Sitios de Unión , Línea Celular Transformada , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Biología Computacional , Daño del ADN , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/genética , Humanos , Ratones , Familia de Multigenes , Células 3T3 NIH , Nucleosomas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Unión Proteica , Sitio de Iniciación de la Transcripción
10.
Mol Cell ; 38(4): 539-50, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20513429

RESUMEN

The p14/p19(ARF) (ARF) product of the CDKN2A gene displays tumor suppressor activity both in the presence and absence of p53/TP53. In p53-negative cells, ARF arrests cell proliferation, at least in part, by suppressing ribosomal RNA synthesis. We show that ARF does this by controlling the subnuclear localization of the RNA polymerase I transcription termination factor, TTF-I. TTF-I shuttles between nucleoplasm and nucleolus with the aid of the chaperone NPM/B23 and a nucleolar localization sequence within its N-terminal regulatory domain. ARF inhibits nucleolar import of TTF-I by binding to this nucleolar localization sequence, causing the accumulation of TTF-I in the nucleoplasm. Depletion of TTF-I recapitulates the effects of ARF on ribosomal RNA synthesis and is rescued by the introduction of a TTF-I transgene. Thus, our data delineate the pathway by which ARF regulates ribosomal RNA synthesis and provide a compelling explanation for the role of NPM.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ARN Polimerasa I/metabolismo , Ribosomas/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Animales , Línea Celular , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Factores de Transcripción
11.
Mol Cell ; 35(4): 414-25, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716787

RESUMEN

Epigenetic methyl-CpG silencing of the ribosomal RNA (rRNA) genes is thought to downregulate rRNA synthesis in mammals. In contrast, we now show that CpG methylation in fact positively influences rRNA synthesis and processing. Human HCT116 cells, inactivated for DNMT1 and DNMT3b or treated with aza-dC, lack CpG methylation and reactivate a large fraction of normally silent rRNA genes. Unexpectedly, these cells display reduced rRNA synthesis and processing and accumulate unprocessed 45S rRNA. Reactivation of the rRNA genes is associated with their cryptic transcription by RNA polymerase II. Ectopic expression of cryptic rRNA gene transcripts recapitulates the defects associated with loss of CpG methylation. The data demonstrate that rRNA gene silencing prevents cryptic RNA polymerase II transcription of these genes. Lack of silencing leads to the partial disruption of rRNA synthesis and rRNA processing, providing an explanation for the cytotoxic effects of loss of CpG methylation.


Asunto(s)
Nucléolo Celular/metabolismo , Islas de CpG , Metilación de ADN , ADN Ribosómico/metabolismo , ARN Polimerasa II/metabolismo , ARN Ribosómico/metabolismo , Transcripción Genética , Azacitidina/análogos & derivados , Azacitidina/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/patología , Proliferación Celular , Supervivencia Celular , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Decitabina , Inhibidores Enzimáticos/farmacología , Células HCT116 , Humanos , Cinética , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Transcripción Genética/efectos de los fármacos , ADN Metiltransferasa 3B
12.
PLoS Genet ; 10(8): e1004505, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25121932

RESUMEN

Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs).


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Ribosomas/genética , Transcripción Genética , Animales , Nucléolo Celular/genética , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Histonas/genética , Histonas/metabolismo , Ratones , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/antagonistas & inhibidores , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/genética , ARN Ribosómico/genética
13.
J Biol Chem ; 290(26): 16142-56, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25922075

RESUMEN

We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.


Asunto(s)
Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Sinaptotagminas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Alineación de Secuencia , Sinaptotagminas/genética
14.
Pharmacol Res ; 107: 48-56, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26926095

RESUMEN

The Extended-Synaptotagmin (E-Syt) membrane proteins were only recently discovered, but have already been implicated in a range of interrelated cellular functions, including calcium and receptor signaling, and membrane lipid transport. However, despite their evolutionary conservation and detailed studies of their molecular actions, we still have little idea of how and when these proteins are required in cellular and organism physiology. Here we review our present understanding of the E-Syts and discuss the molecular functions and in vivo requirements for these proteins.


Asunto(s)
Sinaptotagminas/metabolismo , Animales , Humanos , Conformación Proteica , Transducción de Señal , Sinaptotagminas/química
16.
Nucleic Acids Res ; 40(12): 5357-67, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22383580

RESUMEN

The ARF tumour suppressor stabilizes p53 by negatively regulating the E3 ubiquitin ligase MDM2 to promote cell cycle arrest and cell death. However, ARF is also able to arrest cell proliferation by inhibiting ribosome biogenesis. In greater part this is achieved by targeting the transcription termination factor I (TTF-I) for nucleolar export, leading to an inhibition of both ribosomal RNA synthesis and processing. We now show that in the absence of ARF, TTF-I is ubiquitinylated by MDM2. MDM2 interacts directly with TTF-I and regulates its cellular abundance by targeting it for degradation by the proteasome. Enhanced TTF-I levels inhibit ribosome biogenesis by suppressing ribosomal RNA synthesis and processing, strongly suggesting that exact TTF-I levels are critical for efficient ribosome biogenesis. We further show that concomitant with its ability to displace TTF-I from the nucleolus, ARF inhibits MDM2 ubiquitinylation of TTF-I by competitively binding to a site overlapping the MDM2 interaction site. Thus, both the sub-nuclear localization and the abundance of TTF-I are key regulators of ribosome biogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ribosomas/metabolismo , Ubiquitinación , Animales , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Factores de Transcripción , Proteína p14ARF Supresora de Tumor/metabolismo
17.
EMBO Rep ; 12(3): 231-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21331097

RESUMEN

The Christmas tree view of active ribosomal RNA (rRNA) genes suggests a gene topology in which a large number of nascent rRNA transcripts are prevented from intertwining. The way in which this is achieved has remained unclear. By using a combination of chromatin immunoprecipitation and chromosome conformation capture techniques, we show that the promoter, upstream region and terminator R3 of active rRNA genes are held together spatially throughout the cell cycle, forming a stable core around which the transcribed region is organized. We suggest a new core-helix model for the topology of rRNA genes, that provides a structural basis for the productive synthesis or rRNA.


Asunto(s)
Ciclo Celular , Cromosomas Humanos/genética , Genes de ARNr , Modelos Moleculares , ARN Ribosómico/biosíntesis , Transcripción Genética , Northern Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cromosomas Humanos/química , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Relación Estructura-Actividad , Proteína de Unión a TATA-Box/metabolismo , Regiones Terminadoras Genéticas
18.
Front Genet ; 14: 1225832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600660

RESUMEN

The UBTF E210K neuroregression syndrome is a predominantly neurological disorder caused by recurrent de novo dominant variants in Upstream Binding Factor, that is, essential for transcription of the ribosomal RNA genes. This unusual form of ribosomopathy is characterized by a slow decline in cognition, behavior, and sensorimotor functioning during the critical period of development. UBTF (or UBF) is a multi-HMGB-box protein that acts both as an epigenetic factor to establish "open" chromatin on the ribosomal genes and as a basal transcription factor in their RNA Polymerase I transcription. Here we review the possible mechanistic connections between the UBTF variants, ribosomal RNA gene transcription and the neuroregression syndrome, and suggest that DNA topology may play an important role.

19.
Nat Cell Biol ; 25(11): 1600-1615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857833

RESUMEN

A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Legionella/metabolismo , Microscopía por Crioelectrón , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/microbiología , Transferasas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda