Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34644537

RESUMEN

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inflamación/etiología , Activación de Macrófagos/genética , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fagocitos , Transducción de Señal
2.
Immunity ; 54(8): 1772-1787.e9, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34289378

RESUMEN

As substantial constituents of the multiple myeloma (MM) microenvironment, pro-inflammatory macrophages have emerged as key promoters of disease progression, bone destruction, and immune impairment. We identify beta-2-microglobulin (ß2m) as a driver in initiating inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed ß2m promotes ß2m amyloid aggregation in MAMs, resulting in lysosomal rupture and ultimately production of active interleukin-1ß (IL-1ß) and IL-18. This process depends on activation of the NLRP3 inflammasome after ß2m accumulation, as macrophages from NLRP3-deficient mice lack efficient ß2m-induced IL-1ß production. Moreover, depletion or silencing of ß2m in MM cells abrogates inflammasome activation in a murine MM model. Finally, we demonstrate that disruption of NLRP3 or IL-18 diminishes tumor growth and osteolytic bone destruction normally promoted by ß2m-induced inflammasome signaling. Our results provide mechanistic evidence for ß2m's role as an NLRP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NLRP3 represents a potential therapeutic approach in MM.


Asunto(s)
Amiloide/metabolismo , Mieloma Múltiple/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Microglobulina beta-2/metabolismo , Animales , Células Cultivadas , Humanos , Inflamación/inmunología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lisosomas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fagocitosis/inmunología , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Microglobulina beta-2/genética
3.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33761330

RESUMEN

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Fibroblastos/inmunología , Inflamación/inmunología , Membrana Sinovial/inmunología , Inmunidad Adaptativa/inmunología , Animales , Artritis Reumatoide/inmunología , Línea Celular , Perros , Humanos , Mediadores de Inflamación/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratas Wistar , Transducción de Señal/inmunología
4.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
5.
Nature ; 618(7967): 1033-1040, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316667

RESUMEN

Most clinically applied cancer immunotherapies rely on the ability of CD8+ cytolytic T cells to directly recognize and kill tumour cells1-3. These strategies are limited by the emergence of major histocompatibility complex (MHC)-deficient tumour cells and the formation of an immunosuppressive tumour microenvironment4-6. The ability of CD4+ effector cells to contribute to antitumour immunity independently of CD8+ T cells is increasingly recognized, but strategies to unleash their full potential remain to be identified7-10. Here, we describe a mechanism whereby a small number of CD4+ T cells is sufficient to eradicate MHC-deficient tumours that escape direct CD8+ T cell targeting. The CD4+ effector T cells preferentially cluster at tumour invasive margins where they interact with MHC-II+CD11c+ antigen-presenting cells. We show that T helper type 1 cell-directed CD4+ T cells and innate immune stimulation reprogramme the tumour-associated myeloid cell network towards interferon-activated antigen-presenting and iNOS-expressing tumouricidal effector phenotypes. Together, CD4+ T cells and tumouricidal myeloid cells orchestrate the induction of remote inflammatory cell death that indirectly eradicates interferon-unresponsive and MHC-deficient tumours. These results warrant the clinical exploitation of this ability of CD4+ T cells and innate immune stimulators in a strategy to complement the direct cytolytic activity of CD8+ T cells and natural killer cells and advance cancer immunotherapies.


Asunto(s)
Linfocitos T CD4-Positivos , Muerte Celular , Inmunoterapia , Inflamación , Neoplasias , Microambiente Tumoral , Humanos , Células Presentadoras de Antígenos/inmunología , Antígeno CD11c/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Muerte Celular/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunidad Innata , Inflamación/inmunología , Interferones/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Células Mieloides/inmunología , Células TH1/citología , Células TH1/inmunología
6.
N Engl J Med ; 390(8): 687-700, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38381673

RESUMEN

BACKGROUND: Treatment for autoimmune diseases such as systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis often involves long-term immune suppression. Resetting aberrant autoimmunity in these diseases through deep depletion of B cells is a potential strategy for achieving sustained drug-free remission. METHODS: We evaluated 15 patients with severe SLE (8 patients), idiopathic inflammatory myositis (3 patients), or systemic sclerosis (4 patients) who received a single infusion of CD19 chimeric antigen receptor (CAR) T cells after preconditioning with fludarabine and cyclophosphamide. Efficacy up to 2 years after CAR T-cell infusion was assessed by means of Definition of Remission in SLE (DORIS) remission criteria, American College of Rheumatology-European League against Rheumatism (ACR-EULAR) major clinical response, and the score on the European Scleroderma Trials and Research Group (EUSTAR) activity index (with higher scores indicating greater disease activity), among others. Safety variables, including cytokine release syndrome and infections, were recorded. RESULTS: The median follow-up was 15 months (range, 4 to 29). The mean (±SD) duration of B-cell aplasia was 112±47 days. All the patients with SLE had DORIS remission, all the patients with idiopathic inflammatory myositis had an ACR-EULAR major clinical response, and all the patients with systemic sclerosis had a decrease in the score on the EUSTAR activity index. Immunosuppressive therapy was completely stopped in all the patients. Grade 1 cytokine release syndrome occurred in 10 patients. One patient each had grade 2 cytokine release syndrome, grade 1 immune effector cell-associated neurotoxicity syndrome, and pneumonia that resulted in hospitalization. CONCLUSIONS: In this case series, CD19 CAR T-cell transfer appeared to be feasible, safe, and efficacious in three different autoimmune diseases, providing rationale for further controlled clinical trials. (Funded by Deutsche Forschungsgemeinschaft and others.).


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Lupus Eritematoso Sistémico , Agonistas Mieloablativos , Miositis , Esclerodermia Sistémica , Humanos , Antígenos CD19/administración & dosificación , Síndrome de Liberación de Citoquinas/etiología , Estudios de Seguimiento , Lupus Eritematoso Sistémico/terapia , Miositis/terapia , Esclerodermia Sistémica/terapia , Agonistas Mieloablativos/administración & dosificación , Ciclofosfamida/administración & dosificación , Infecciones/etiología , Resultado del Tratamiento
7.
Proc Natl Acad Sci U S A ; 121(26): e2403227121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885382

RESUMEN

Treatment with autologous chimeric antigen receptor (CAR) T cells has emerged as a highly effective approach in neuroimmunological disorders such as myasthenia gravis. We report a case of successful anti-CD19 CAR T cell use in treatment-refractory stiff-person syndrome (SPS). To investigate clinical and immunological effects of anti-CD19 CAR T cell use in treatment-refractory SPS, a 69-y-old female with a 9-y history of treatment-refractory SPS with deteriorating episodes of stiffness received an infusion of autologous anti-CD19 CAR T cells (KYV-101) and was monitored clinically and immunologically for more than 6 mo. CAR T cell infusion resulted in reduced leg stiffness, drastic improvement in gait, walking speed increase over 100%, and daily walking distance improvement from less than 50 m to over 6 km within 3 mo. GABAergic medication (benzodiazepines) was reduced by 40%. KYV-101 CAR T cells were well tolerated with only low-grade cytokine release syndrome. This report of successful use of anti-CD19 CAR T cells in treatment-refractory SPS supports continued exploration of this approach in SPS and other B cell-related autoimmune disorders.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Síndrome de la Persona Rígida , Humanos , Síndrome de la Persona Rígida/terapia , Síndrome de la Persona Rígida/inmunología , Femenino , Anciano , Inmunoterapia Adoptiva/métodos , Antígenos CD19/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Resultado del Tratamiento
8.
Lancet ; 402(10416): 2034-2044, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37748491

RESUMEN

Despite the tremendous progress in the clinical management of autoimmune diseases, many patients do not respond to the currently used treatments. Autoreactive B cells play a key role in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B-cell-depleting monoclonal antibodies, such as rituximab, have poor therapeutic efficacy in autoimmune diseases, mainly due to the persistence of autoreactive B cells in lymphatic organs and inflamed tissues. The adoptive transfer of T cells engineered to target tumour cells via chimeric antigen receptors (CARs) has emerged as an effective treatment modality in B-cell malignancies. In the last 2 years treatment with autologous CAR T cells directed against the CD19 antigen has been introduced in therapy of autoimmune disease. CD19 CAR T cells induced a rapid and sustained depletion of circulating B cells, as well as in a complete clinical and serological remission of refractory systemic lupus erythematosus and dermatomyositis. In this paper, we discuss the evolving strategies for targeting autoreactive B cells via CAR T cells, which might be used for targeted therapy in autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Enfermedades Autoinmunes/terapia , Linfocitos T , Lupus Eritematoso Sistémico/tratamiento farmacológico , Rituximab/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico , Antígenos CD19 , Receptores de Antígenos de Linfocitos T
9.
Blood ; 140(4): 349-358, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35316325

RESUMEN

CD19-directed chimeric antigen receptor (CAR) T cells have evolved as a new standard-of-care (SOC) treatment in patients with relapsed/refractory (r/r) large B-cell lymphoma (LBCL). Here, we report the first German real-world data on SOC CAR T-cell therapies with the aim to explore risk factors associated with outcomes. Patients who received SOC axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel) for LBCL and were registered with the German Registry for Stem Cell Transplantation (DRST) were eligible. The main outcomes analyzed were toxicities, response, overall survival (OS), and progression-free survival (PFS). We report 356 patients who received axi-cel (n = 173) or tisa-cel (n = 183) between November 2018 and April 2021 at 21 German centers. Whereas the axi-cel and tisa-cel cohorts were comparable for age, sex, lactate dehydrogenase (LDH), international prognostic index (IPI), and pretreatment, the tisa-cel group comprised significantly more patients with poor performance status, ineligibility for ZUMA-1, and the need for bridging, respectively. With a median follow-up of 11 months, Kaplan-Meier estimates of OS, PFS, and nonrelapse mortality (NRM) 12 months after dosing were 52%, 30%, and 6%, respectively. While NRM was largely driven by infections subsequent to prolonged neutropenia and/or severe neurotoxicity and significantly higher with axi-cel, significant risk factors for PFS on the multivariate analysis included bridging failure, elevated LDH, age, and tisa-cel use. In conclusion, this study suggests that important outcome determinants of CD19-directed CAR T-cell treatment of LBCL in the real-world setting are bridging success, CAR-T product selection, LDH, and the absence of prolonged neutropenia and/or severe neurotoxicity. These findings may have implications for designing risk-adapted CAR T-cell therapy strategies.


Asunto(s)
Linfoma de Células B Grandes Difuso , Neutropenia , Antígenos CD19 , Alemania/epidemiología , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/patología , Neutropenia/inducido químicamente
10.
Haematologica ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934068

RESUMEN

Macrophages are one of the key mediators of the therapeutic effects exerted by monoclonal antibodies, such as the anti-CD19 antibody tafasitamab, approved in combination with lenalidomide for the treatment of relapsed or refractory (r/r) diffuse large B cell lymphoma (DLBCL). However, antibody-dependent cellular phagocytosis (ADCP) in the tumor microenvironment can be counteracted by increased expression of the inhibitory receptor SIRPα on macrophages and its ligand, the immune checkpoint molecule CD47 on tumor cells. The aim of this study was to investigate the impact of the CD47-SIRPα axis on tafasitamabmediated phagocytosis and explore the potential of anti-CD47 blockade to enhance its antitumor activity. Elevated expression of both SIRPα and CD47 was observed in DLBCL patient-derived lymph node biopsies compared to healthy controls. CRISPR-mediated CD47 overexpression impacted tafasitamab-mediated ADCP in vitro and increased expression of SIRPα on macrophages correlated with decreased ADCP activity of tafasitamab against DLBCL cell lines. Combination of tafasitamab and an anti-CD47 blocking antibody enhanced ADCP activity of in vitro generated macrophages. Importantly, tafasitamab-mediated phagocytosis was elevated in combination with CD47 blockade using primary DLBCL cells and patient-derived lymphoma-associated macrophages (LAMs) in an autologous setting. Furthermore, lymphoma cells with low CD19 expression were efficiently eliminated by the combination treatment. Finally, combined treatment of tafasitamab and an anti-CD47 antibody resulted in enhanced tumor volume reduction and survival benefit in lymphoma xenograft mouse models. These findings provide evidence that CD47 blockade can enhance the phagocytic potential of tumor targeting immunotherapies such as tafasitamab and suggest there is value in exploring the combination in the clinic.

11.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509561

RESUMEN

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Asunto(s)
Calcio , Trastornos Mieloproliferativos , Humanos , Fura-2 , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Transducción de Señal , Mutación , Receptores de Eritropoyetina/genética , Janus Quinasa 2/genética
12.
Eur J Haematol ; 112(4): 641-649, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164819

RESUMEN

OBJECTIVES: Treatment intensification (including consolidative high-dose chemotherapy with autologous stem cell transplantation [HDT-ASCT]) significantly improved outcome in primary central nervous system lymphoma (PCNSL) patients. METHODS: We conducted a multicenter, retrospective analysis of newly diagnosed PCNSL patients, treated with intensified treatment regimens. The following scores were evaluated in terms of overall survival (OS) and progression-free survival (PFS): Memorial Sloan-Kettering Cancer Center (MSKCC), International Extranodal Lymphoma Study Group (IELSG), and three-factor (3F) prognostic score. Further, all scores were comparatively investigated for model quality and concordance. RESULTS: Altogether, 174 PCNSL patients were included. One hundred and five patients (60.3%) underwent HDT-ASCT. Two-year OS and 2-year PFS for the entire population were 73.3% and 48.5%, respectively. The MSKCC (p = .003) and 3F score (p < .001), but not the IELSG score (p = .06), had the discriminatory power to identify different risk groups for OS. In regard to concordance, the 3F score (C-index [0.71]) outperformed both the MSKCC (C-index [0.64]) and IELSG (C-index [0.53]) score. Moreover, the superiority of the 3F score was shown for PFS, successfully stratifying patients in three risk groups, which also resulted in the highest C-index (0.66). CONCLUSION: The comparative analysis of established PCNSL risk scores affirm the clinical utility of the 3F score stratifying the widest prognostic spectrum among PCNSL patients treated with intensified treatment approaches.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Trasplante de Células Madre Hematopoyéticas , Linfoma , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Estudios Retrospectivos , Trasplante Autólogo , Linfoma/terapia , Linfoma/tratamiento farmacológico
13.
Eur Radiol ; 34(2): 790-796, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37178198

RESUMEN

OBJECTIVE: Body composition assessment derived from cross-sectional imaging has shown promising results as a prognostic biomarker in several tumor entities. Our aim was to analyze the role of low skeletal muscle mass (LSMM) and fat areas for prognosis of dose-limiting toxicity (DLT) and treatment response in patients with primary central nervous system lymphoma (PCNSL). METHODS: Overall, 61 patients (29 female patients, 47.5%) with a mean age of 63.8 ± 12.2 years, range 23-81 years, were identified in the data base between 2012 and 2020 with sufficient clinical and imaging data. Body composition assessment, comprising LSMM and visceral and subcutaneous fat areas, was performed on one axial slice on L3-height derived from staging computed tomography (CT) images. DLT was assessed during chemotherapy in clinical routine. Objective response rate (ORR) was measured on following magnetic resonance images of the head accordingly to the Cheson criteria. RESULTS: Twenty-eight patients had DLT (45.9%). Regression analysis revealed that LSMM was associated with objective response, OR = 5.19 (95% CI 1.35-19.94, p = 0.02) (univariable regression), and OR = 4.23 (95% CI 1.03- 17.38, p = 0.046) (multivariable regression). None of the body composition parameters could predict DLT. Patients with normal visceral to subcutaneous ratio (VSR) could be treated with more chemotherapy cycles compared to patients with high VSR (mean, 4.25 vs 2.94, p = 0.03). Patients with ORR had higher muscle density values compared to patients with stable and/or progressive disease (34.46 ± vs 28.18 ± HU, p = 0.02). CONCLUSIONS: LSMM is strongly associated with objective response in patients with PCNSL. Body composition parameters cannot predict DLT. CLINICAL RELEVANCE STATEMENT: Low skeletal muscle mass on computed tomography (CT) is an independent prognostic factor of poor treatment response in central nervous system lymphoma. Analysis of the skeletal musculature on staging CT should be implemented into the clinical routine in this tumor entity. KEY POINTS: • Low skeletal muscle mass is strongly associated with the objective response rate. • No body composition parameters could predict dose-limiting toxicity.


Asunto(s)
Linfoma , Neoplasias , Sarcopenia , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Sarcopenia/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Pronóstico , Composición Corporal , Tomografía Computarizada por Rayos X , Neoplasias/patología , Sistema Nervioso Central/patología , Linfoma/diagnóstico por imagen , Linfoma/tratamiento farmacológico , Estudios Retrospectivos
14.
Cancer Immunol Immunother ; 72(6): 1661-1672, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36602564

RESUMEN

T cell function is central to immune reconstitution and control of residual chronic myeloid leukemia (CML) cells after treatment initiation and is associated with achieving deep molecular response as a prerequisite for treatment-free remission, the ultimate therapeutic goal in CML. ATP-pocket-binding tyrosine kinase inhibitors (TKIs) like imatinib, dasatinib, and nilotinib are widely used for treating CML, but they have shown to inhibit T cell function as an "off-target" effect. Therefore, we tested asciminib, the first-in-class BCR::ABL1 fusion protein inhibitor specifically targeting the ABL myristoyl pocket (STAMP) and compared its effects on T cell function with imatinib, dasatinib, and nilotinib. Whereas all four TKIs inhibited the expression of the co-stimulatory protein CD28, the amino acid transporter CD98, proliferation, and secretion of pro-inflammatory cytokines IFNγ, IL-6, and IL-17A upon T cell stimulation, asciminib had less impact on PD-1, activation markers, and IL-2 secretion. T cells treated with asciminib and the other TKIs maintained their ability to mobilize their respiratory capacity and glycolytic reserve, which is an important surrogate for metabolic fitness and flexibility. Overall, we found milder inhibitory effects of asciminib on T cell activation, which might be beneficial for the immunological control of residual CML cells.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Dasatinib/farmacología , Dasatinib/uso terapéutico , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteínas Tirosina Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Proteínas de Fusión bcr-abl , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
15.
Blood ; 138(19): 1830-1842, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289026

RESUMEN

Acute myeloid leukemia (AML) is an attractive entity for the development of chimeric antigen receptor (CAR) T-cell immunotherapy because AML blasts are susceptible to T-cell-mediated elimination. Here, we introduce sialic acid-binding immunoglobulin-like lectin 6 (Siglec-6) as a novel target for CAR T cells in AML. We designed a Siglec-6-specific CAR with a targeting domain derived from the human monoclonal antibody JML-1. We found that Siglec-6 is commonly expressed on AML cell lines and primary AML blasts, including the subpopulation of AML stem cells. Treatment with Siglec-6 CAR T cells confers specific antileukemia reactivity that correlates with Siglec-6 expression in preclinical models, including induction of complete remission in a xenograft AML model in immunodeficient mice (NSG/U937). In addition, we confirmed Siglec-6 expression on transformed B cells in chronic lymphocytic leukemia (CLL), and specific anti-CLL reactivity of Siglec-6 CAR T cells in vitro. Of particular interest, we found that Siglec-6 is not detectable on normal hematopoietic stem and progenitor cells (HSPCs) and that treatment with Siglec-6 CAR T cells does not affect their viability and lineage differentiation in colony-formation assays. These data suggest that Siglec-6 CAR T-cell therapy may be used to effectively treat AML without the need for subsequent allogeneic hematopoietic stem cell transplantation. In mature normal hematopoietic cells, we detected Siglec-6 in a proportion of memory (and naïve) B cells and basophilic granulocytes, suggesting the potential for limited on-target/off-tumor reactivity. The lack of expression of Siglec-6 on normal HSPCs is a key to differentiating it from other Siglec family members (eg, Siglec-3 [CD33]) and other CAR target antigens (eg, CD123) that are under investigation in AML, and it warrants the clinical investigation of Siglec-6 CAR T-cell therapy.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Inmunoterapia Adoptiva , Lectinas/inmunología , Leucemia Mieloide Aguda/terapia , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Leucemia Mieloide Aguda/inmunología , Linfocitos T/inmunología , Células U937
16.
Blood ; 138(24): 2499-2513, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34166502

RESUMEN

Hematotoxicity represents a frequent chimeric antigen receptor (CAR) T-cell-related adverse event and remains poorly understood. In this multicenter analysis, we studied patterns of hematopoietic reconstitution and evaluated potential predictive markers in 258 patients receiving axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel) for relapsed/refractory large B-cell lymphoma. We observed profound (absolute neutrophil count [ANC] <100 cells per µL) neutropenia in 72% of patients and prolonged (21 days or longer) neutropenia in 64% of patients. The median duration of severe neutropenia (ANC < 500 cells per µL) was 9 days. We aimed to identify predictive biomarkers of hematotoxicity using the duration of severe neutropenia until day +60 as the primary end point. In the training cohort (n = 58), we observed a significant correlation with baseline thrombocytopenia (r = -0.43; P = .001) and hyperferritinemia (r = 0.54; P < .0001) on univariate and multivariate analysis. Incidence and severity of cytokine-release syndrome, immune effector cell-associated neurotoxicity syndrome, and peak cytokine levels were not associated with the primary end point. We created the CAR-HEMATOTOX model, which included markers associated with hematopoietic reserve (eg, platelet count, hemoglobin, and ANC) and baseline inflammation (eg, C-reactive protein and ferritin). This model was validated in independent cohorts, one from Europe (n = 91) and one from the United States (n = 109) and discriminated patients with severe neutropenia ≥14 days to <14 days (pooled validation: area under the curve, 0.89; sensitivity, 89%; specificity, 68%). A high CAR-HEMATOTOX score resulted in a longer duration of neutropenia (12 vs 5.5 days; P < .001) and a higher incidence of severe thrombocytopenia (87% vs 34%; P < .001) and anemia (96% vs 40%; P < .001). The score implicates bone marrow reserve and inflammation prior to CAR T-cell therapy as key features associated with delayed cytopenia and will be useful for risk-adapted management of hematotoxicity.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Productos Biológicos/efectos adversos , Enfermedades Hematológicas/etiología , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/terapia , Receptores de Antígenos de Linfocitos T , Adulto , Anciano , Anciano de 80 o más Años , Anemia/etiología , Antineoplásicos Inmunológicos/uso terapéutico , Productos Biológicos/uso terapéutico , Síndrome de Liberación de Citoquinas/etiología , Humanos , Incidencia , Persona de Mediana Edad , Recurrencia Local de Neoplasia/terapia , Síndromes de Neurotoxicidad/etiología , Neutropenia/etiología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Estudios Retrospectivos , Trombocitopenia/etiología , Adulto Joven
17.
BMC Cancer ; 23(1): 1153, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012567

RESUMEN

Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Proteínas de Fusión bcr-abl , Fosforilación Oxidativa , Tapsigargina/farmacología , Tapsigargina/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores Enzimáticos/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Oligomicinas/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis
18.
Chemistry ; 28(30): e202104420, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35419888

RESUMEN

Elevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones. We have previously developed three aminoferrocene (AF)-based derivatives, which are activated in the presence of elevated levels of ROS present in cancer cells with formation of electron-rich compounds able to generate ROS and reduce mitochondrial membrane potential (MMP). All of them exhibit important drawbacks including either low efficacy or high unspecific toxicity that prevents their application in vivo up to date. Herein we describe unusual AF-derivatives lacking these drawbacks. These compounds act via an alternative mechanism: they are chemically stable in the presence of ROS, generate mitochondrial ROS in cancer cells, but not normal cells and exhibit anticancer effect in vivo.


Asunto(s)
Antineoplásicos , Mitocondrias , Antineoplásicos/química , Apoptosis , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Stem Cells ; 38(8): 986-993, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32346937

RESUMEN

Mesenchymal stromal cells (MSCs) are characterized by their multipotency, regenerative potential, and immunoregulatory properties. Nowadays, MSCs represent a promising cell-therapeutic option for hyperinflammatory conditions such as graft-vs-host disease following allogeneic hematopoietic stem cell transplantation. A better understanding of their biology is a prerequisite for improving their treatment efficacy. Emerging evidence suggests that immunosuppressive properties are not constitutively active in MSCs. Instead, microenvironmental inflammatory stimuli such as the cytokines interferon (IFN)-γ or tumor necrosis factor (TNF)-α license MSCs to acquire a tolerance-promoting phenotype. The immunological checkpoint molecule programmed death-ligand 1 (PD-L1) is an important regulator of T-cell responses. Binding of PD-L1 to the programmed cell death protein 1 (PD-1) receptor on T-cells suppresses their activation, proliferation, and induces apoptosis. Previous studies have revealed that cell surface expression and secretion of PD-L1 are part of the MSCs' immunomodulatory armamentarium. Here, we report that inflammatory licensing leads to an enhanced PD-L1 cell surface expression and secretion, which are both accompanied by an increased posttranslational protein N-glycosylation. These post-translational modifications have been shown to be critical for key biological processes such as cell trafficking, receptor signaling, and immunohomeostasis. In fact, promoting N-glycosylation in MSCs yielded increased PD-L1 levels. We report for the first time that PD-L1 N-glycosylation plays a decisive role for its transport to the MSCs' cell surface and its subsequent secretion (in response to proinflammatory trigger). Our data offer insights into a novel regulatory mechanism with the potential to be exploited as a means to foster the immunosuppressive potency of human MSCs.


Asunto(s)
Antígeno B7-H1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Glicosilación , Humanos , Regulación hacia Arriba
20.
Cell Mol Life Sci ; 76(23): 4783-4794, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31168659

RESUMEN

RATIONALE: Mitochondrial homeostasis has recently emerged as a focal point in the pathophysiology of idiopathic pulmonary fibrosis (IPF), but conflicting data have been reported regarding its regulation. We speculated that phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein at the intersection of multiple cell death and mitochondrial turnover pathways, might be involved in the pathogenesis of IPF. METHODS: PGAM5-deficient mice and human pulmonary epithelial cells were analyzed comparatively with PGAM5-proficient controls in a bleomycin-based model of pulmonary fibrogenesis. Mitochondria were visualized by confocal and transmission electron microscopy. Mitochondrial homeostasis was assessed using JC1 (ΔΨ) and flow cytometry. RESULTS: PGAM5 plays an important role in pulmonary fibrogenesis. Pgam5-/- mice displayed significantly attenuated lung fibrosis compared to controls. Complementary, in vitro studies demonstrated that PGAM5 impaired mitochondrial integrity on a functional and structural level independently of mtROS-production. On a molecular level, reduced mitophagy caused by PGAM5 deficiency improved mitochondrial homeostasis. CONCLUSIONS: Our study identifies PGAM5 as an important regulator of mitochondrial homeostasis in pulmonary fibrosis. Our data further indicate PGAM5-mediated mitophagy itself as a pivotal gateway event in the mediation of self-sustaining mitochondrial damage and membrane depolarization. Our work hereby highlights the importance of mitochondrial dynamics and identifies a potential therapeutic target that warrants further studies. Toxic agents lead to mitochondrial damage resulting in depolarization of the mitochondrial membrane potential (ΔΨ) which is a gateway event for the initiation of PGAM5-mediated mitophagy. PGAM5-mediated mitophagy in turn leads to a self-perpetuating escalation of ΔΨ depolarization. Loss of the mitophagy-based damage-enhancing loop under PGAM5-deficient conditions breaks this vicious cycle, leading to improved mitochondrial homeostasis.


Asunto(s)
Mitocondrias/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fibrosis Pulmonar/patología , Células A549 , Animales , Bleomicina/farmacología , Modelos Animales de Enfermedad , Edición Génica , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Fosfoproteínas Fosfatasas/genética , Proteínas Quinasas/metabolismo , Fibrosis Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda