Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38981605

RESUMEN

Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved LV function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI, and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38269408

RESUMEN

Diabetes (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. The combination of DM and HTN significantly accelerates development of renal injury; however, the underlying mechanisms of this synergy are still poorly understood. This study assessed whether mitochondria (MT) dysfunction is essential in developing renal injury in a rat model with combined DM and HTN. Type 1 DM was induced in Wistar rats by streptozotocin (STZ). HTN was induced six weeks later by inter-renal aorta constriction between the renal arteries, so that right kidneys were exposed to HTN while left kidneys were exposed to normotension. Kidneys exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion (UAE). In contrast, kidneys exposed to DM plus 8 weeks HTN had significantly increased UAE and glomerular structural damage with reduced glomerular filtration rate. Marked increases in MT-derived reactive oxygen species (ROS) were also observed in right kidneys exposed to HTN+DM. We further tested whether treatment with MT-targeted antioxidant (MitoTEMPO) after the onset of HTN attenuates renal injury in rats with DM+HTN. Results show that kidneys in DM+AC+MitoTEMPO rats had lower UAE, less glomerular damage, and preserved MT function compared to untreated DM+AC rats. Our studies indicate that MT-derived ROS play a major role in promoting kidney dysfunction when DM is combined with HTN. Preserving MT function might be a potential therapeutic approach to halt the development of renal injury when DM coexists with HTN.

3.
Am J Physiol Renal Physiol ; 326(5): F727-F736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511219

RESUMEN

Although obesity is recognized as a risk factor for cardiorenal and metabolic diseases, the impact of parental obesity on the susceptibility of their offspring to renal injury at adulthood is unknown. We examined the impact of parental obesity on offspring kidney function, morphology, and markers of kidney damage after acute kidney injury (AKI). Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were fed N (HN) or H diet (HH) after weaning. All offspring groups were submitted to bilateral AKI by clamping the left and right renal pedicles for 30 min. Compared with male NH and NN offspring from lean parents, male HH and HN offspring from obese parents exhibited higher kidney injury markers such as urinary, renal osteopontin, plasma creatinine, urinary albumin excretion, and neutrophil gelatinase-associated lipocalin (NGAL) levels, and worse histological injury score at 22 wk of age. Only albumin excretion and NGAL were elevated in female HH offspring from obese parents compared with lean and obese offspring from lean parents. We also found an increased mortality rate and worse kidney injury scores after AKI in male offspring from obese parents, regardless of the diet consumed after weaning. Female offspring were protected from major kidney injury after AKI. These results indicate that parental obesity leads to increased kidney injury in their offspring after ischemia-reperfusion in a sex-dependent manner, even when their offspring remain lean.NEW & NOTEWORTHY Offspring from obese parents are more susceptible to kidney injury and worse outcomes following an acute ischemia-reperfusion insult. Male, but not female, offspring from obese parents exhibit increased blood pressure early in life. Female offspring are partially protected against major kidney injury induced by ischemia-reperfusion.


Asunto(s)
Lesión Renal Aguda , Riñón , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Masculino , Femenino , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Riñón/fisiopatología , Riñón/patología , Riñón/metabolismo , Factores Sexuales , Obesidad/complicaciones , Obesidad/fisiopatología , Dieta Alta en Grasa , Embarazo , Lipocalina 2/metabolismo , Obesidad Materna/metabolismo , Obesidad Materna/complicaciones , Obesidad Materna/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Ratones , Factores de Riesgo , Modelos Animales de Enfermedad , Biomarcadores/sangre
4.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R401-R410, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37519251

RESUMEN

We examined potential sex differences in appetite and blood pressure (BP) responses to melanocortin-4 receptor (MC4R) blockade in offspring from lean and obese parents. Offspring from normal (N) diet-fed parents were fed N (NN) or high-fat (H) diets (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were also fed N (HN) or H diets (HH). Adult male and female offspring were implanted with BP telemetry probes and intracerebroventricular cannulas to infuse MC4R antagonist or vehicle. Infusion of the MC4R antagonist SHU-9119 (1 nmol/h) for 7 days caused larger increases in calorie intake and body weight in obese compared with lean offspring. In male offspring, HH and HN groups exhibited higher baseline BP compared with NN and NH, and HH showed a greater reduction in BP during SHU-9119 infusion. In female offspring, HH also showed higher baseline BP and greater reduction in BP during MC4R blockade. SHU-9119 reduced heart rate in all groups, but reductions were more pronounced in offspring from lean parents. Combined α and ß-adrenergic blockade reduced BP more in male HH offspring compared with NN controls. Losartan reduced BP more in male NH, HN, and HH offspring compared with NN controls. Losartan and α- and ß-adrenergic blockade reduced BP similarly in all female groups. These results suggest that endogenous MC4R activity contributes to elevated BP in obese offspring from obese parents. Our findings also indicate important sex differences in the mechanisms of BP control in male and female offspring of obese parents.


Asunto(s)
Hipertensión , Receptor de Melanocortina Tipo 4 , Femenino , Masculino , Humanos , Adulto , Presión Sanguínea/fisiología , Receptor de Melanocortina Tipo 4/genética , Losartán , Caracteres Sexuales , Obesidad , Aumento de Peso , Adrenérgicos
5.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175448

RESUMEN

Since aerobic glycolysis was first observed in tumors almost a century ago by Otto Warburg, the field of cancer cell metabolism has sparked the interest of scientists around the world as it might offer new avenues of treatment for malignant cells. Our current study claims the discovery of gnetin H (GH) as a novel glycolysis inhibitor that can decrease metabolic activity and lactic acid synthesis and displays a strong cytostatic effect in melanoma and glioblastoma cells. Compared to most of the other glycolysis inhibitors used in combination with the complex-1 mitochondrial inhibitor phenformin (Phen), GH more potently inhibited cell growth. RNA-Seq with the T98G glioblastoma cell line treated with GH showed more than an 80-fold reduction in thioredoxin interacting protein (TXNIP) expression, indicating that GH has a direct effect on regulating a key gene involved in the homeostasis of cellular glucose. GH in combination with phenformin also substantially enhances the levels of p-AMPK, a marker of metabolic catastrophe. These findings suggest that the concurrent use of the glycolytic inhibitor GH with a complex-1 mitochondrial inhibitor could be used as a powerful tool for inducing metabolic catastrophe in cancer cells and reducing their growth.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Fenformina , Glucólisis , Glucosa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Línea Celular Tumoral
6.
Am J Physiol Renal Physiol ; 322(1): F76-F88, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34866402

RESUMEN

Diabetes mellitus (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. In this study, we assessed whether DM and HTN interact synergistically to promote kidney dysfunction and whether transient receptor potential cation channel 6 (TRPC6) contributes to this synergism. In wild-type (WT; B6/129s background) and TRPC6 knockout (KO) mice, DM was induced by streptozotocin injection to increase fasting glucose levels to 250-350 mg/dL. HTN was induced by aorta constriction (AC) between the renal arteries. AC increased blood pressure (BP) by ∼25 mmHg in the right kidney (above AC), whereas BP in the left kidney (below AC) returned to near normal after 8 wk, with both kidneys exposed to the same levels of blood glucose, circulating hormones, and neural influences. Kidneys of WT mice exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion. In contrast, WT kidneys exposed to DM plus HTN (WT-DM + AC mice) for 8 wk had much greater increases in albumin excretion and histological injury. Marked increased apoptosis was also observed in the right kidneys of WT-DM + AC mice. In contrast, in TRPC6 KO mice with DM + AC, right kidneys exposed to the same levels of high BP and high glucose had lower albumin excretion and less glomerular damage and apoptotic cell injury compared with right kidneys of WT-DM + AC mice. Our results suggest that TRPC6 may contribute to the interaction of DM and HTN to promote kidney dysfunction and apoptotic cell injury.NEW & NOTEWORTHY A major new finding of this study is that the combination of moderate diabetes and hypertension promoted marked renal dysfunction, albuminuria, and apoptotic cell injury, and that these effects were greatly ameliorated by transient receptor potential cation channel 6 deficiency. These results suggest that transient receptor potential cation channel 6 may play an important role in contributing to the interaction of diabetes and hypertension to promote kidney injury.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Tasa de Filtración Glomerular , Hipertensión/complicaciones , Riñón/metabolismo , Insuficiencia Renal Crónica/etiología , Canal Catiónico TRPC6/metabolismo , Albuminuria/metabolismo , Albuminuria/patología , Albuminuria/fisiopatología , Animales , Glucemia/metabolismo , Presión Sanguínea , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Hipertensión/metabolismo , Riñón/patología , Riñón/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología , Factores de Riesgo , Canal Catiónico TRPC6/genética
7.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R81-R97, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537100

RESUMEN

Transient receptor potential cation channel 6 (TRPC6), a member of the TRPC family, is expressed in the hypothalamus and modulates cell Ca2+ influx. However, the role of TRPC6 in controlling metabolic and cardiovascular functions under normal conditions has not been previously determined. Thus the impacts of TRPC6 deletion on energy balance, metabolic, and cardiovascular regulation as well as the anorexic responses to leptin and melanocortin 3/4 receptor (MC3/4R) activation were investigated in this study. Extensive cardiometabolic phenotyping was conducted in male and female TRPC6 knockout (KO) and control mice from 6 to 24 wk of age to assess mechanisms by which TRPC6 influences regulation of energy balance and blood pressure (BP). We found that TRPC6 KO mice are heavier with greater adiposity, are hyperphagic, and have reduced energy expenditure, impaired glucose tolerance, hyperinsulinemia, and increased liver fat compared with controls. TRPC6 KO mice also have smaller brains, reduced proopiomelanocortin mRNA levels in the hypothalamus, and impaired anorexic response to leptin but not to MC3/4R activation. BP and heart rate, assessed by telemetry, were similar in TRPC6 KO and control mice, and BP responses to air-jet stress were attenuated in TRPC6 KO mice despite increased body weight and metabolic disorders that normally raise BP and increase BP responses to stress. Our results provide evidence for a novel and important role of TRPC6 in controlling energy balance, adiposity, and glucose homeostasis, which suggests that normal TRPC6 function may be necessary to link weight gain and hyperleptinemia with BP responses to acute stress.


Asunto(s)
Canal Catiónico TRPC6 , Aumento de Peso , Animales , Anorexia , Presión Sanguínea , Peso Corporal , Ingestión de Alimentos/fisiología , Femenino , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/metabolismo , Canal Catiónico TRPC6/deficiencia , Canal Catiónico TRPC6/metabolismo , Aumento de Peso/fisiología
8.
Am J Physiol Regul Integr Comp Physiol ; 322(5): R421-R433, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318854

RESUMEN

We examined the impact of parental obesity on offspring blood pressure (BP) regulation and cardiovascular responses to stress. Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were also fed N (HN) or H diet (HH). Body weight, calorie intake, and fat mass were measured at 22 wk of age when cardiovascular phenotyping was performed. Male and female HH offspring were 15% heavier than NH and 70% heavier than NN offspring. Male HH and HN offspring had elevated BP (121 ± 2 and 115 ± 1 mmHg, by telemetry) compared with male NH and NN offspring (108 ± 6 and 107 ± 3 mmHg, respectively) and augmented BP responses to angiotensin II, losartan, and hexamethonium. Male HH and HN offspring also showed increased BP responses to air-jet stress (37 ± 2 and 38 ± 2 mmHg) compared with only 24 ± 3 and 25 ± 3 mmHg in NH and NN offspring. Baseline heart rate (HR) and HR responses to air-jet stress were similar among groups. In females, BP and cardiovascular responses to stress were similar among all offspring. Male H diet-fed offspring from obese H diet-fed purinoreceptor 7-deficient (HH-P2X7R-KO) parents had normal BP that was similar to control NN-P2X7R-KO offspring from lean parents. These results indicate that parental obesity leads to increased BP and augmented BP responses to stress in their offspring in a sex-dependent manner, and the impact of parental obesity on male offspring BP regulation is markedly attenuated in P2X7R-KO mice.


Asunto(s)
Hipertensión , Caracteres Sexuales , Animales , Presión Sanguínea/fisiología , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad
9.
Circ Res ; 126(6): 789-806, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32163341

RESUMEN

Obesity and hypertension, which often coexist, are major risk factors for heart failure and are characterized by chronic, low-grade inflammation, which promotes adverse cardiac remodeling. While macrophages play a key role in cardiac remodeling, dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac injury. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation has been implicated in macrophage polarization. M1 macrophages primarily rely on glycolysis, whereas M2 macrophages rely on the tricarboxylic acid cycle and oxidative phosphorylation; thus, factors that affect macrophage metabolism may disrupt M1/M2 homeostasis and exacerbate inflammation. The mechanisms by which obesity and hypertension may synergistically induce macrophage metabolic dysfunction, particularly during cardiac remodeling, are not fully understood. We propose that obesity and hypertension induce M1 macrophage polarization via mechanisms that directly target macrophage metabolism, including changes in circulating glucose and fatty acid substrates, lipotoxicity, and tissue hypoxia. We discuss canonical and novel proinflammatory roles of macrophages during obesity-hypertension-induced cardiac injury, including diastolic dysfunction and impaired calcium handling. Finally, we discuss the current status of potential therapies to target macrophage metabolism during heart failure, including antidiabetic therapies, anti-inflammatory therapies, and novel immunometabolic agents.


Asunto(s)
Corazón/fisiopatología , Hipertensión/inmunología , Activación de Macrófagos , Obesidad/inmunología , Animales , Humanos , Hipertensión/fisiopatología , Obesidad/fisiopatología
10.
J Mol Cell Cardiol ; 158: 38-48, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34023353

RESUMEN

Myocardial infarction (MI) is one of the leading causes of mortality and cardiovascular disease worldwide. MI is characterized by a substantial inflammatory response in the infarcted left ventricle (LV), followed by transition of quiescent fibroblasts to active myofibroblasts, which deposit collagen to form the reparative scar. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is an important mechanism by which these cell types transition towards reparative phenotypes. Thus, we hypothesized that dimethyl fumarate (DMF), a clinically approved anti-inflammatory agent with metabolic actions, would improve post-MI remodeling via modulation of macrophage and fibroblast metabolism. Adult male C57BL/6J mice were treated with DMF (10 mg/kg) for 3-7 days after MI. DMF attenuated LV infarct and non-infarct wall thinning at 3 and 7 days post-MI, and decreased LV dilation and pulmonary congestion at day 7. DMF improved LV infarct collagen deposition, myofibroblast activation, and angiogenesis at day 7. DMF also decreased pro-inflammatory cytokine expression (Tnf) 3 days after MI, and decreased inflammatory markers in macrophages isolated from the infarcted heart (Hif1a, Il1b). In fibroblasts extracted from the infarcted heart at day 3, RNA-Seq analysis demonstrated that DMF promoted an anti-inflammatory/pro-reparative phenotype. By Seahorse analysis, DMF did not affect glycolysis in either macrophages or fibroblasts at day 3, but enhanced macrophage OXPHOS while impairing fibroblast OXPHOS. Our results indicate that DMF differentially affects macrophage and fibroblast metabolism, and promotes anti-inflammatory/pro-reparative actions. In conclusion, targeting cellular metabolism in the infarcted heart may be a promising therapeutic strategy.


Asunto(s)
Antiinflamatorios/administración & dosificación , Dimetilfumarato/administración & dosificación , Ventrículos Cardíacos/efectos de los fármacos , Macrófagos/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miofibroblastos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Células Cultivadas , Colágeno/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Modelos Animales de Enfermedad , Ventrículos Cardíacos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
11.
Am J Physiol Heart Circ Physiol ; 321(3): H485-H495, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34296964

RESUMEN

Previous studies suggest that parental obesity may adversely impact long-term metabolic health of the offspring. We tested the hypothesis that parental (paternal + maternal) obesity impairs cardiac function in the offspring early in life. Within 1-3 days after weaning, offspring from obese rats fed a high-fat diet (HFD-Offs) and age-matched offspring from lean rats (ND-Offs) were submitted to echocardiography and cardiac catheterization for assessment of pressure-volume relationships. Then, hearts were digested and isolated cardiomyocytes were used to determine contractile function, calcium transients, proteins related to calcium signaling, and mitochondrial bioenergetics. Female and male HFD-Offs were heavier (72 ± 2 and 61 ± 4 g vs. 57 ± 2 and 49 ± 1 g), hyperglycemic (112 ± 8 and 115 ± 12 mg/dL vs. 92 ± 10 and 96 ± 8 mg/dL) with higher plasma insulin and leptin concentrations compared with female and male ND-Offs. When compared with male controls, male HFD-Offs exhibited similar systolic function but impaired diastolic function as indicated by increased IVRT (22 ± 1 vs. 17 ± 1 ms), E/E' ratio (29 ± 2 vs. 23 ± 1), and tau (5.7 ± 0.2 vs. 4.8 ± 0.2). The impaired diastolic function was associated with reduced resting free Ca2+ levels and phospholamban protein expression, increased activated matrix metalloproteinase 2, and reduced SIRT3 protein expression, mitochondrial ATP reserve, and ATP-linked respiration. These results indicate that male and female Offs from obese parents have multiple metabolic abnormalities early in life (1-3 days after weaning) and that male, but not female, Offs have impaired diastolic function as well as reductions in cardiac SIRT3, resting free Ca2+ levels, and mitochondrial biogenesis.NEW & NOTEWORTHY Parental obesity contributes to diastolic dysfunction in young offspring (1-3 days after weaning) in a sex-dependent manner, as well as reduced cardiac SIRT3 expression and altered mitochondrial bioenergetics, resting Ca2+ levels, and reduced phospholamban protein levels.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Sirtuinas/genética , Animales , Señalización del Calcio , Células Cultivadas , Epigénesis Genética , Femenino , Leptina/sangre , Masculino , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Obesidad Materna/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Sirtuinas/metabolismo
12.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R476-R484, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877243

RESUMEN

Changes in cardiomyocyte metabolism have been heavily implicated in cardiac injury and heart failure (HF). However, there is emerging evidence that metabolism in nonmyocyte populations, including cardiac fibroblasts, immune cells, and endothelial cells, plays an important role in cardiac remodeling and adaptation to injury. Here, we discuss recent advances and insights into nonmyocyte metabolism in the healthy and injured heart. Metabolic switching from mitochondrial oxidative phosphorylation to glycolysis is critical for immune cell (macrophage and T lymphocyte) and fibroblast phenotypic switching in the inflamed and fibrotic heart. On the other hand, cardiac endothelial cells are heavily reliant on glycolytic metabolism, and thus impairments in glycolytic metabolism underlie endothelial cell dysfunction. Finally, we review current and ongoing metabolic therapies for HF and the potential implications for nonmyocyte metabolism.


Asunto(s)
Remodelación Atrial/fisiología , Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Remodelación Ventricular/fisiología , Células Endoteliales/metabolismo , Glucólisis/fisiología , Humanos , Fosforilación Oxidativa
13.
Basic Res Cardiol ; 114(2): 6, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635789

RESUMEN

Cardiac fibroblasts are the major producers of extracellular matrix (ECM) to form infarct scar. We hypothesized that fibroblasts undergo a spectrum of phenotype states over the course of myocardial infarction (MI) from early onset to scar formation. Fibroblasts were isolated from the infarct region of C57BL/6J male mice (3-6 months old, n = 60) at days 0 (no MI control) and 1, 3, or 7 after MI. Whole transcriptome analysis was performed by RNA-sequencing. Of the genes sequenced, 3371 were differentially expressed after MI. Enrichment analysis revealed that MI day 1 fibroblasts displayed pro-inflammatory, leukocyte-recruiting, pro-survival, and anti-migratory phenotype through Tnfrsf9 and CD137 signaling. MI day 3 fibroblasts had a proliferative, pro-fibrotic, and pro-angiogenic profile with elevated Il4ra signaling. MI day 7 fibroblasts showed an anti-angiogenic homeostatic-like myofibroblast profile and with a step-wise increase in Acta2 expression. MI day 7 fibroblasts relied on Pik3r3 signaling to mediate Tgfb1 effects and Fgfr2 to regulate PI3K signaling. In vitro, the day 3 MI fibroblast secretome stimulated angiogenesis, while day 7 MI fibroblast secretome repressed angiogenesis through Thbs1 signaling. Our results reveal novel mechanisms for fibroblasts in expressing pro-inflammatory molecules and regulating angiogenesis following MI.


Asunto(s)
Inflamación/fisiopatología , Infarto del Miocardio/fisiopatología , Miofibroblastos/metabolismo , Neovascularización Fisiológica/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/citología , Fenotipo , Remodelación Ventricular/fisiología , Cicatrización de Heridas/fisiología
14.
Am J Physiol Heart Circ Physiol ; 315(1): H71-H79, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29600895

RESUMEN

After myocardial infarction, remodeling of the left ventricle involves a wound-healing orchestra involving a variety of cell types. In order for wound healing to be optimal, appropriate communication must occur; these cells all need to come in at the right time, be activated at the right time in the right amount, and know when to exit at the right time. When this occurs, a new homeostasis is obtained within the infarct, such that infarct scar size and quality are sufficient to maintain left ventricular size and shape. The ideal scenario does not always occur in reality. Often, miscommunication can occur between infarct and remote spaces, across the temporal wound-healing spectrum, and across organs. When miscommunication occurs, adverse remodeling can progress to heart failure. This review discusses current knowledge gaps and recent development of the roles of inflammation and the extracellular matrix in myocardial infarction remodeling. In particular, the macrophage is one cell type that provides direct and indirect regulation of both the inflammatory and scar-forming responses. We summarize current research efforts focused on identifying biomarker indicators that reflect the status of each component of the wound-healing process to better predict outcomes.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo , Transducción de Señal , Animales , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Humanos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología
15.
Basic Res Cardiol ; 113(5): 40, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30132266

RESUMEN

Sex differences in heart failure development following myocardial infarction (MI) are not fully understood. We hypothesized that differential MI signaling could explain variations in outcomes. Analysis of the mouse heart attack research tool 1.0 (422 mice; young = 5.4 ± 0.1; old = 23.3 ± 0.1 months of age) was used to dissect MI signaling pathways, which was validated in a new cohort of mice (4.8 ± 0.2 months of age); and substantiated in humans. Plasma collected at visit 2 from the MI subset of the Jackson Heart Study (JHS; a community-based study consisting of middle aged and older adults of African ancestry) underwent glycoproteomics grouped by outcome: (1) heart failure hospitalization after visit 2 (n = 3 men/12 women) and (2) without hospitalization through 2012 (n = 24 men/21 women). Compared to young male mice, the infarct region of young females had fewer, but more efficient tissue clearing neutrophils with reduced pro-inflammatory gene expression. Apolipoprotein (Apo) F, which acts upstream of the liver X receptors/retinoid X receptor (LXR/RXR) pathway, was elevated in the day 7 infarcts of old mice compared to young controls and was increased in both men and women with heart failure. In vitro, Apo F stimulated CD36 and peroxisome proliferator-activated receptor (PPAR)γ activation in male neutrophils to turn off NF-κB activation and stimulate LXR/RXR signaling to initiate resolution. Female neutrophils were desensitized to Apo F and instead relied on thrombospondin-1 stimulation of CD36 to upregulate AMP-activated protein kinase, resulting in an overall better wound healing strategy. With age, female mice were desensitized to LXR/RXR signaling, resulting in enhanced interleukin-6 activation, a finding replicated in the JHS community cohort. This is the first report to uncover sex differences in post-MI neutrophil signaling that yielded better outcomes in young females and worse outcomes with age.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Receptores X del Hígado/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Neutrófilos/metabolismo , Receptores X Retinoide/metabolismo , Transducción de Señal , Función Ventricular Izquierda , Remodelación Ventricular , Adulto , Negro o Afroamericano , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Bases de Datos Factuales , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/etnología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Infarto del Miocardio/etnología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Fenotipo , Pronóstico , Factores Sexuales , Estados Unidos/epidemiología , Adulto Joven
16.
Basic Res Cardiol ; 113(4): 26, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29868933

RESUMEN

In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.


Asunto(s)
Plasticidad de la Célula , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Plasticidad de la Célula/genética , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Metabolismo Energético , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Genotipo , Mediadores de Inflamación/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Fagocitosis , Fenotipo , Factores de Tiempo , Transcriptoma , Función Ventricular Izquierda/genética , Remodelación Ventricular/genética
17.
Pharmacol Res ; 137: 252-258, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30394317

RESUMEN

Following myocardial infarction (MI), timely resolution of inflammation promotes wound healing and scar formation while limiting excessive tissue damage. Resolution promoting factors (RPFs) are agents that blunt leukocyte trafficking and inflammation, promote necrotic and apoptotic cell clearance, and stimulate scar formation. Previously identified RPFs include mediators derived from lipids (resolvins, lipoxins, protectins, and maresins), proteins (glucocorticoids, annexin A1, galectin 1, and melanocortins), or gases (CO, H2S, and NO). Matrix metalloproteinase-12 (MMP-12; macrophage elastase) has shown promising RPF qualities in a variety of disease states. We review here the evidence that MMP-12 may serve as a novel RPF with potential therapeutic efficacy in the setting of MI.


Asunto(s)
Metaloproteinasa 12 de la Matriz/fisiología , Infarto del Miocardio/metabolismo , Animales , Humanos
18.
Alcohol Clin Exp Res ; 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29846943

RESUMEN

BACKGROUND: Alcohol is among the most commonly abused drugs worldwide and affects many organ systems, including the heart. Alcoholic cardiomyopathy is characterized by a dilated cardiac phenotype with extensive hypertrophy and extracellular matrix (ECM) remodeling. We have previously shown that chronic ethanol (EtOH) administration accelerates the progression to heart failure in a rat model of volume overload. However, the mechanism by which this decompensation occurs is unknown. For this study, we hypothesized that chronic EtOH administration would prevent compensatory hypertrophy and cardiac remodeling in a rodent model of pressure overload (PO). METHODS: Abdominal aortic constriction was used to create PO in 8-week-old male Wistar rats. Alcohol administration was performed via chronic intermittent EtOH vapor inhalation for 2 weeks prior to surgery and for the duration of the 8-week study. Echocardiography measurements were taken to assess ventricular functional and structural changes. RESULTS: PO increased posterior wall thickness and the hypertrophic markers, atrial and B-type natriuretic peptides (ANP and BNP). With the added stressor of EtOH, wall thickness, ANP, and BNP decreased in PO animals. The combination of PO and EtOH resulted in increased wall stress compared to PO alone. PO also caused increased expression of collagen I and III, whereas EtOH alone only increased collagen III. The combined stresses of PO and EtOH led to an increase in collagen I expression, but collagen III did not change, resulting in an increased collagen I/III ratio in the PO rats treated with EtOH. Lastly, Notch1 expression was significantly increased only in the PO rats treated with EtOH. CONCLUSIONS: Our data indicate that chronic EtOH may limit the cardiac hypertrophy induced by PO which may be associated with a Notch1 mechanism, resulting in increased wall stress and altered ECM profile.

19.
J Mol Cell Cardiol ; 97: 15-23, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27107489

RESUMEN

Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III expression, whereas this effect was not observed in rats with VO+EtOH. In conclusion, chronic EtOH accelerates the development of elevated wall stress and promotes early eccentric remodeling in rats with VO. Our data indicate that these effects may be due to disruptions in compensatory hypertrophy and extracellular matrix remodeling in response to volume overload.


Asunto(s)
Alcoholes/efectos adversos , Miocardio/metabolismo , Miocardio/patología , Remodelación Ventricular , Consumo de Bebidas Alcohólicas , Alcoholes/administración & dosificación , Animales , Biomarcadores , Cardiomiopatías/diagnóstico , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/mortalidad , Colágeno/genética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Matriz Extracelular/metabolismo , Expresión Génica , Masculino , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , Ratas , Función Ventricular Izquierda
20.
Alcohol Clin Exp Res ; 40(8): 1671-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27375174

RESUMEN

BACKGROUND: Chronic intermittent ethanol vapor (CIEV) exposure has been used extensively to produce rodent models of alcohol dependence, but unlike other models of alcohol abuse, CIEV has not been assessed as a model of end-organ damage. The purpose of this study was to characterize the effects of CIEV on peripheral organ systems affected by alcohol abuse, including the liver, lungs, and cardiovascular system. METHODS: Adult male Sprague-Dawley rats were exposed to daily CIEV for a period of 8 weeks (14HR ON/10HR OFF), producing blood alcohol levels of ~200 mg/dl. Controls were exposed to room air. After 8 weeks, echocardiography was performed to assess cardiac function. Indices of liver injury (alanine and aspartate aminotransferases [ALT and AST]; cytochrome p450 2E1 [CYP2E1]; alcohol dehydrogenase [ADH]; Oil Red O and triglyceride content; lipid peroxidation; inflammatory cytokine expression; and macrophage infiltration), and lung inflammatory cell count, proinflammatory cytokine expression, and lipid peroxidation were measured. RESULTS: Left ventricular posterior wall thickness was significantly decreased, and systolic blood pressure was significantly elevated by CIEV compared with air controls. CIEV led to a significant increase in plasma ALT and triglycerides compared with room air controls. CIEV did not affect liver triglyceride content, lipid staining or peroxidation, but increased CYP2E1 and chemokine (C-C motif) ligand 2 (CCL2) protein expression, while decreasing ADH expression. CIEV significantly increased numbers of both polymorphonuclear neutrophils and lymphocytes in the bronchoalveolar lavage fluid, indicative of pulmonary inflammation. However, CIEV did not produce significant changes in lung mass, pulmonary lipid peroxidation, inflammatory cytokine expression, or edema. CONCLUSIONS: These results show that CIEV produces hepatic, pulmonary, and cardiovascular effects in rats similar to those found in other models of chronic alcohol administration. Alcohol vapor administration is a novel method of alcohol-induced tissue injury with high potential for widespread use in alcohol toxicology research.


Asunto(s)
Trastornos Inducidos por Alcohol/sangre , Trastornos Inducidos por Alcohol/patología , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Etanol/toxicidad , Administración por Inhalación , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Densidad Ósea/efectos de los fármacos , Densidad Ósea/fisiología , Edema/sangre , Edema/inducido químicamente , Edema/patología , Hepatopatías Alcohólicas/sangre , Hepatopatías Alcohólicas/patología , Enfermedades Pulmonares/sangre , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/patología , Masculino , Ratas , Ratas Sprague-Dawley , Volatilización
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda