RESUMEN
Mercury (Hg) concentrations and their associated toxicological effects in terrestrial ecosystems of the Gulf of Mexico are largely unknown. Compounding this uncertainty, a large input of organic matter from the 2010 Deepwater Horizon oil spill may have altered Hg cycling and bioaccumulation dynamics. To test this idea, we quantified blood concentrations of total mercury (THg) in Seaside Sparrows (Ammospiza maritima) and Marsh Rice Rats (Oryzomys palustris) in marshes west and east of the Mississippi River in 2015 and 2016. We also tested for a difference in THg concentrations between oiled and non-oiled sites. To address the potential confounding effect of diet variation on Hg transfer, we used stable nitrogen (δ15N) and carbon (δ13C) isotope values as proxies of trophic position and the source of primary production, respectively. Our results revealed that five to six years after the spill, THg concentrations were not higher in sites oiled by the spill compared to non-oiled sites. In both species, THg was higher at sites east of the Mississippi River compared to control and oiled sites, located west. In Seaside Sparrows but not in Marsh Rice Rats, THg increased with δ15N values, suggesting Hg trophic biomagnification. Overall, even in sites with the most elevated THg, concentrations were generally low. In Seaside Sparrows, THg concentrations were also lower than previously reported in this and other closely related passerines, with only 7% of tested birds exceeding the lowest observed effect concentration associated with toxic effects across bird species (0.2 µg/g ww). The factors associated with geographic heterogeneity in Hg exposure remain uncertain. Clarification could inform risk assessment and future restoration and management actions in a region facing vast anthropogenic changes.
Asunto(s)
Monitoreo del Ambiente , Estuarios , Mercurio , Gorriones , Contaminantes Químicos del Agua , Animales , Sigmodontinae , Humedales , Ríos/química , Golfo de México , Contaminación por PetróleoRESUMEN
Estuaries are essential habitats for recreational and commercial fish that are shaped by both natural and anthropogenic processes. In Louisiana a combination of climate change and planned coastal restoration actions is predicted to increase freshwater introduction to coastal estuaries. As such there is a need to quantify the relationships between estuarine fish ecology and salinity to aid in predicting how species will respond to shifts in salinity. We investigated the relative abundance and dietary niches of adult (24.5 ± 5.4 cm standard length) spotted seatrout Cynoscion nebulosus across varying salinity regimes (oligohaline, mesohaline, and polyhaline) within Barataria Bay, Louisiana, using a combination of net sampling and gut content and stable isotopes analysis. We found that the relative abundance of C. nebulosus was lowest at the oligohaline site, translating to approximately five fewer fish captured for every single psu decrease in a site's average annual salinity. In contrast, we found that diets and, to a lesser extent, isotopic niches had a high degree of overlap across sites with differing salinity regimes. Fish and penaeid shrimp were the most common and important prey taxa recovered from guts at all sites. The small isotopic differences found among sites were likely due to spatial variation in hydrogeochemical baselines, and the observed isotopic overlap provides support for the idea that C. nebulosus move between adjacent salinity regimes and forage throughout Barataria Bay. Our results contribute to a greater understanding of the salinity preference and trophic ecology of C. nebulosus that can aid in predicting their responses to future salinity and habitat changes within Barataria Bay associated with predicted climate change and planned coastal restoration actions.
Asunto(s)
Dieta , Estuarios , Salinidad , Animales , Louisiana , Perciformes/fisiología , Cadena Alimentaria , Contenido Digestivo/química , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisisRESUMEN
One natural antimicrobial peptide (EpVP2a, Eumenes pomiformis Venom Peptide 2a) found in the venom of a potter wasp (Eumenes pomiformis) and six analogs were synthesized and tested to compare their antimicrobial, antifungal, pesticide, and hemolytic activity with the wild type. Our results indicated that while the original peptide and the synthetic analogs had no antifungal activity or anti-bacterial activity against Pseudomonas aeruginosa, the original peptide and the analog with substitution of the aspartic acid on the sequence by a lysine (EpVP2a-D2K2) had activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. This same analog also shows significant insecticide activity. The analog with substitution of lysine with a slightly smaller ornithine had activity against E. coli and B. subtilis. All analogs show low hemolytic activity compared to the natural peptide. The peptide with a reverse sequence to the natural one (EpVp2a Retro) shows low helix structure which can also explain why it has no antibacterial activity and low hemolytic activity. Circular dichroism spectra show that these peptides form an alpha helix structure and their amino acid positions predict an amphipathic nature.
Asunto(s)
Plaguicidas , Avispas , Animales , Antibacterianos/química , Ponzoñas , Secuencia de Aminoácidos , Lisina , Escherichia coli , Péptidos/química , Avispas/química , Angiotensina II , Antifúngicos , Pruebas de Sensibilidad MicrobianaRESUMEN
Land management of parks and vegetation complexity can affect arthropod diversity and subsequently alter trophic interactions between predators and their prey. In this study, we examined spiders in five parks with varying management histories and intensities to determine whether certain spider species were associated with particular plants. We also determined whether web architecture influenced spider occurrence. Our results showed that humpbacked orb-weavers (Eustala anastera) were associated with an invasive plant, Chinese privet (Ligustrum sinense). This study revealed how invasive plants can potentially influence certain spider communities, as evidenced by this native spider species only occurring on invasive plants. Knowing more about spider populations-including species makeup and plants they populate-will give insights into how spider populations are dealing with various ecosystem changes. While we did not assess the effect of invasive plants on the behavior of spiders, it is possible that invasive species may not always be harmful to ecosystems; in the case of spiders, invasive plants may serve as a useful environment to live in. More studies are needed to ascertain whether invasive plants can have adverse effects on spider ecology in the long term.
RESUMEN
Environmental pollution and biological invasions are key drivers of biodiversity change. However, the effects of invasion and pollution on food webs remain largely unexplored. Here, we used stable isotopes to examine the effects of common carp Cyprinus carpio and pollution on trophic dynamics in six small reservoirs. Our results revealed that the trophic niche widths of invertebrates, vertebrates, and invasive carp did not significantly differ among reservoirs with different pollution statuses. However, we found low niche conservatism among reservoirs, suggesting that while niche width may remain consistent, there is a shift in the position of the niches in isotopic space under both pollution and invasion scenarios. Niche conservatism among reservoirs was generally higher in invertebrates, but this was also regardless of reservoir condition (i.e. presence or absence of pollution and invasion). These results suggest that invasion by species coupled with organic pollution may cause subtle yet differing effects on components of a food web (basal end-members, invertebrates and vertebrates). Our findings provide a baseline measure of the potential in the development of detection and response strategies for carp invasions and organic pollution.
Asunto(s)
Carpas , Animales , Ecosistema , Cadena Alimentaria , Invertebrados , Isótopos de Nitrógeno/análisisRESUMEN
Continental ecosystems of the middle Permian Period (273-259 million years ago) are poorly understood. In South Africa, the vertebrate fossil record is well documented for this time interval, but the plants and insects are virtually unknown, and are rare globally. This scarcity of data has hampered studies of the evolution and diversification of life, and has precluded detailed reconstructions and analyses of ecosystems of this critical period in Earth's history. Here we introduce a new locality in the southern Karoo Basin that is producing exceptionally well-preserved and abundant fossils of novel freshwater and terrestrial insects, arachnids, and plants. Within a robust regional geochronological, geological and biostratigraphic context, this Konservat- and Konzentrat-Lagerstätte offers a unique opportunity for the study and reconstruction of a southern Gondwanan deltaic ecosystem that thrived 266-268 million years ago, and will serve as a high-resolution ecological baseline towards a better understanding of Permian extinction events.
Asunto(s)
Ecosistema , Fósiles , Animales , Sudáfrica , Vertebrados , Plantas , InsectosRESUMEN
Bioindicator species are commonly used as proxies to help identify the ecological effects of oil spills and other stressors. However, the utility of taxa as bioindicators is dependent on understanding their trophic niche and life history characteristics, as these factors mediate their ecological responses. Seaside sparrows (Ammospiza maritima) and marsh rice rats (Oryzomys palustris) are two ubiquitous terrestrial vertebrates that are thought to be bioindicators of oil spills in saltmarsh ecosystems. To improve the utility of these omnivorous taxa as bioindicators, we used carbon and nitrogen stable isotope analysis to quantify their trophic niches at saltmarshes in coastal Louisiana with differing oiling histories. We found that rats generally had lower trophic positions and incorporated more aquatic prey relative to seaside sparrows. The range of resources used (i.e.,trophic niche width) varied based on oiling history. Seaside sparrows had wider trophic niches than marsh rice rats at unoiled sites, but not at oiled sites. Trophic niche widths of conspecifics were less consistent at oiled sites, although marsh rice rats at oiled sites had wider trophic niches than rats at unoiled sites. These results suggest that past oiling histories may have imparted subtle, yet differing effects on the foraging ecology of these two co-occurring species. However, the temporal lag between initial oiling and our study makes identifying the ultimate drivers of differences between oiled and unoiled sites challenging. Even so, our findings provide a baseline quantification of the trophic niches of sympatric seaside sparrows and marsh rice rats that will aid in the use of these species as indicators of oiling and other environmental stressors in saltmarsh ecosystems.
RESUMEN
Aquatic insects provide an energy subsidy to riparian food webs. However, most empirical studies have considered the role of subsidies only in terms of magnitude (using biomass measurements) and quality (using physiologically important fatty acids), negating an aspect of subsidies that may affect their impact on recipient food webs: the potential of insects to transport contaminants (e.g., mercury) to terrestrial ecosystems. To this end, I used empirical data to estimate the magnitude of nutrients (using physiologically important fatty acids as a proxy) and contaminants (total mercury (Hg) and methylmercury (MeHg)) exported by insects from rivers and lacustrine systems in each continent. The results reveal that North American rivers may export more physiologically important fatty acids per unit area (93.0 ± 32.6 Kg Km-2 year-1) than other continents. Owing to the amount of variation in Hg and MeHg, there were no significant differences in MeHg and Hg among continents in lakes (Hg: 1.5 × 10-4 to 1.0 × 10-3 Kg Km-2 year-1; MeHg: 7.7 × 10-5 to 1.0 × 10-4 Kg Km-2 year-1) and rivers (Hg: 3.2 × 10-4 to 1.1 × 10-3 Kg Km-2 year-1; MeHg: 3.3 × 10-4 to 8.9 × 10-4 Kg Km-2 year-1), with rivers exporting significantly larger quantities of mercury across all continents than lakes. Globally, insect export of physiologically important fatty acids by insect was estimated to be ~43.9 × 106 Kg year-1 while MeHg was ~649.6 Kg year-1. The calculated estimates add to the growing body of literature, which suggests that emerging aquatic insects are important in supplying essential nutrients to terrestrial consumers; however, with the increase of pollutants in freshwater systems, emergent aquatic insect may also be sentinels of organic contaminants to terrestrial consumers.
Asunto(s)
Ácidos Grasos/análisis , Insectos/química , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Animales , Ácidos Docosahexaenoicos/análisis , Ácido Eicosapentaenoico/análisis , Monitoreo del Ambiente , Cadena Alimentaria , Agua Dulce/análisis , Lagos/análisis , Ríos/químicaRESUMEN
We used three complementary methods to assess the diet of two insectivorous bat species: one an obligate aerial hunter, Miniopterus natalensis, and the other Myotis tricolor whose morphology and taxonomic affiliation to other trawling bats suggests it may be a trawler (capturing insects from the water surface with its feet and tail). We used visual inspection, stable isotope values and fatty acid profiles of insect fragments in bat faeces sampled across five sites to determine the contribution of aquatic and terrestrial arthropods to the diets of the two species. The niche widths of M. tricolor were generally wider than those of Miniopterus natalensis but with much overlap, both taking aquatic and terrestrial insects, albeit in different proportions. The diet of M. tricolor had high proportions of fatty acids (20:5ω3 and 22:6ω3) that are only obtainable from aquatic insects. Furthermore, the diet of M. tricolor had higher proportions of water striders (Gerridae) and whirligig beetles (Gyrinidae), insects obtainable via trawling, than Miniopterus natalensis. These results suggest both species are flexible in their consumption of prey but that M. tricolor may use both aerial hawking and trawling, or at least gleaning, to take insects from water surfaces. The resultant spatial segregation may sufficiently differentiate the niches of the two species, allowing them to co-exist. Furthermore, our results emphasize that using a combination of methods to analyse diets of cryptic animals yields greater insights into animal foraging ecology than any of them on their own.