Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS Pathog ; 14(3): e1006917, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543889

RESUMEN

The success of Staphylococcus aureus, as both a human and animal pathogen, stems from its ability to rapidly adapt to a wide spectrum of environmental conditions. Two-component systems (TCSs) play a crucial role in this process. Here, we describe a novel staphylococcal virulence factor, SpdC, an Abi-domain protein, involved in signal sensing and/or transduction. We have uncovered a functional link between the WalKR essential TCS and the SpdC Abi membrane protein. Expression of spdC is positively regulated by the WalKR system and, in turn, SpdC negatively controls WalKR regulon genes, effectively constituting a negative feedback loop. The WalKR system is mainly involved in controlling cell wall metabolism through regulation of autolysin production. We have shown that SpdC inhibits the WalKR-dependent synthesis of four peptidoglycan hydrolases, SceD, SsaA, LytM and AtlA, as well as impacting S. aureus resistance towards lysostaphin and cell wall antibiotics such as oxacillin and tunicamycin. We have also shown that SpdC is required for S. aureus biofilm formation and virulence in a murine septicemia model. Using protein-protein interactions in E. coli as well as subcellular localization in S. aureus, we showed that SpdC and the WalK kinase are both localized at the division septum and that the two proteins interact. In addition to WalK, our results indicate that SpdC also interacts with nine other S. aureus histidine kinases, suggesting that this membrane protein may act as a global regulator of TCS activity. Indeed, using RNA-Seq analysis, we showed that SpdC controls the expression of approximately one hundred genes in S. aureus, many of which belong to TCS regulons.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/metabolismo , Sepsis/microbiología , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Femenino , Histidina Quinasa/genética , Ratones , Fosforilación , Regulón , Sepsis/metabolismo , Transducción de Señal , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidad , Virulencia , Factores de Virulencia/genética
2.
PLoS Genet ; 12(4): e1005962, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27035918

RESUMEN

Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A+T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and non-coding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria.


Asunto(s)
Staphylococcus aureus/genética , Transcriptoma , Sitios de Unión , Northern Blotting , Expresión Génica , Genes Bacterianos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
3.
Appl Environ Microbiol ; 82(1): 18-26, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452552

RESUMEN

Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni, an efficient expression vector in O. oeni is still lacking, and deletion or inactivation of the hsp18 gene is not presently practicable. As an alternative approach, with the goal of understanding the biological function of the O. oeni hsp18 gene in vivo, we have developed an expression vector to produce antisense RNA targeting of hsp18 mRNA. Recombinant strains were exposed to multiple stresses inducing hsp18 gene expression: heat shock and acid shock. We showed that antisense attenuation of hsp18 affects O. oeni survival under stress conditions. These results confirm the involvement of Lo18 in heat and acid tolerance of O. oeni. Results of anisotropy experiments also confirm a membrane-protective role for Lo18, as previous observations had already suggested. This study describes a new, efficient tool to demonstrate the use of antisense technology for modulating gene expression in O. oeni.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Ácido Láctico/metabolismo , Oenococcus/metabolismo , ARN sin Sentido/metabolismo , Vino/microbiología , Proteínas Bacterianas/genética , Etanol/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Oenococcus/genética , ARN sin Sentido/genética
4.
PLoS Pathog ; 8(11): e1003003, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133387

RESUMEN

It has long been a question whether Staphylococcus aureus, a major human pathogen, is able to develop natural competence for transformation by DNA. We previously showed that a novel staphylococcal secondary sigma factor, SigH, was a likely key component for competence development, but the corresponding gene appeared to be cryptic as its expression could not be detected during growth under standard laboratory conditions. Here, we have uncovered two distinct mechanisms allowing activation of SigH production in a minor fraction of the bacterial cell population. The first is a chromosomal gene duplication rearrangement occurring spontaneously at a low frequency [≤10(-5)], generating expression of a new chimeric sigH gene. The second involves post-transcriptional regulation through an upstream inverted repeat sequence, effectively suppressing expression of the sigH gene. Importantly, we have demonstrated for the first time that S. aureus cells producing active SigH become competent for transformation by plasmid or chromosomal DNA, which requires the expression of SigH-controlled competence genes. Additionally, using DNA from the N315 MRSA strain, we successfully transferred the full length SCCmecII element through natural transformation to a methicillin-sensitive strain, conferring methicillin resistance to the resulting S. aureus transformants. Taken together, we propose a unique model for staphylococcal competence regulation by SigH that could help explain the acquisition of antibiotic resistance genes through horizontal gene transfer in this important pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Duplicación de Gen , Factor sigma/genética , Staphylococcus aureus/genética , Transformación Bacteriana , Proteínas Bacterianas/biosíntesis , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Humanos , Factor sigma/biosíntesis , Staphylococcus aureus/metabolismo
5.
Infect Immun ; 80(10): 3438-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22825451

RESUMEN

The WalKR two-component system is essential for the viability of Staphylococcus aureus, playing a central role in controlling cell wall metabolism. We produced a constitutively active form of WalR in S. aureus through a phosphomimetic amino acid replacement (WalR(c), D55E). The strain displayed significantly increased biofilm formation and alpha-hemolytic activity. Transcriptome analysis was used to determine the full extent of the WalKR regulon, revealing positive regulation of major virulence genes involved in host matrix interactions (efb, emp, fnbA, and fnbB), cytolysis (hlgACB, hla, and hlb), and innate immune defense evasion (scn, chp, and sbi), through activation of the SaeSR two-component system. The impact on pathogenesis of varying cell envelope dynamics was studied using a murine infection model, showing that strains producing constitutively active WalR(c) are strongly diminished in their virulence due to early triggering of the host inflammatory response associated with higher levels of released peptidoglycan fragments. Indeed, neutrophil recruitment and proinflammatory cytokine production were significantly increased when the constitutively active walR(c) allele was expressed, leading to enhanced bacterial clearance. Taken together, our results indicate that WalKR play an important role in virulence and eliciting the host inflammatory response by controlling autolytic activity.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Inflamación/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Citocinas/metabolismo , Huella de ADN , Desoxirribonucleasa I , Escherichia coli K12/clasificación , Escherichia coli K12/metabolismo , Citometría de Flujo , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Factores de Virulencia/genética
6.
Mol Microbiol ; 81(1): 8-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21564335

RESUMEN

Since their inception 20 years ago, the biennial blast (Bacterial Locomotion and Signal Transduction) meetings instantly became the place to be for exchanging and sharing the latest developments in the field of bacterial motility and signalling. At the 11th edition, held last January in New Orleans, LA, researchers reported on the myriad of mechanisms involved in bacterial movement, sensing and adaptation, ranging from the molecular level to multicellular behaviour. New insights into bacterial signalling phenomena were gained, revealing previously unsuspected layers of complexity, particularly in mechanisms ensuring signal transduction fidelity and novel links to metabolic processes.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Locomoción , Transducción de Señal , Adaptación Fisiológica , Modelos Biológicos , Nueva Orleans
7.
Mol Microbiol ; 81(3): 602-22, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696458

RESUMEN

Two-component systems (TCSs) are key regulatory pathways allowing bacteria to adapt their genetic expression to environmental changes. Bacitracin, a cyclic dodecylpeptide antibiotic, binds to undecaprenyl pyrophosphate, the lipid carrier for cell wall precursors, effectively inhibiting peptidoglycan biosynthesis. We have identified a novel and previously uncharacterized TCS in the major human pathogen Staphylococcus aureus that we show to be essential for bacitracin and nisin resistance: the BraS/BraR system (Bacitracin resistance associated; SA2417/SA2418). The braRS genes are located immediately upstream from genes encoding an ABC transporter, accordingly designated BraDE. We have shown that the BraSR/BraDE module is a key bacitracin and nisin resistance determinant in S. aureus. In the presence of low antibiotic concentrations, BraSR activate transcription of two operons encoding ABC transporters: braDE and vraDE. We identified a highly conserved imperfect palindromic sequence upstream from the braDE and vraDE promoter sequences, essential for their transcriptional activation by BraSR, suggesting it is the likely BraR binding site. We demonstrated that the two ABC transporters play distinct and original roles in antibiotic resistance: BraDE is involved in bacitracin sensing and signalling through BraSR, whereas VraDE acts specifically as a detoxification module and is sufficient to confer bacitracin and nisin resistance when produced on its own. We show that these processes require functional BraD and VraD nucleotide-binding domain proteins, and that the large extracellular loop of VraE confers its specificity in bacitracin resistance. This is the first example of a TCS associated with two ABC transporters playing separate roles in signal transduction and antibiotic resistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacitracina/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Nisina/metabolismo , Staphylococcus aureus/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Bacitracina/farmacología , Secuencia de Bases , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Nisina/farmacología , Operón , Regiones Promotoras Genéticas , Alineación de Secuencia , Transducción de Señal , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
8.
Antimicrob Agents Chemother ; 56(2): 1047-58, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22123691

RESUMEN

The GraSR two-component system (TCS) controls cationic antimicrobial peptide (CAMP) resistance in Staphylococcus aureus through the synthesis of enzymes that increase bacterial cell surface positive charges, by d-alanylation of teichoic acids and lysylination of phosphatidylglycerol, leading to electrostatic repulsion of CAMPs. The GraS histidine kinase belongs to the "intramembrane-sensing kinases" subfamily, with a structure featuring a short amino-terminal sensing domain, and two transmembrane helices separated only by a short loop, thought to be buried in the cytoplasmic membrane. The GraSR TCS is in fact a multicomponent system, requiring at least one accessory protein, GraX, in order to function, which, as we show here, acts by signaling through the GraS kinase. The graXRS genes are located immediately upstream from genes encoding an ABC transporter, vraFG, whose expression is controlled by GraSR. We demonstrated that the VraFG transporter does not act as a detoxification module, as it cannot confer resistance when produced on its own, but instead plays an essential role by sensing the presence of CAMPs and signaling through GraS to activate GraR-dependent transcription. A bacterial two-hybrid approach, designed to identify interactions between the GraXSR and VraFG proteins, was carried out in order to understand how they act in detecting and signaling the presence of CAMPs. We identified many interactions between these protein pairs, notably between the GraS kinase and both GraX and the VraG permease, indicating the existence of an original five-component system involved in CAMP sensing and signal transduction to promote S. aureus resistance.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica , Transducción de Señal , Staphylococcus aureus/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Histidina Quinasa , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutagénesis Sitio-Dirigida , Plásmidos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
9.
PLoS Pathog ; 6(5): e1000894, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20485570

RESUMEN

We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a DeltacymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the DeltacymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the DeltacymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host.


Asunto(s)
Cistina/metabolismo , Genes Bacterianos/fisiología , Macrófagos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Animales , Línea Celular , Cobre/farmacología , Cistina/farmacología , Disulfuros/farmacología , Femenino , Eliminación de Gen , Homeostasis/fisiología , Peróxido de Hidrógeno/farmacología , Macrófagos/citología , Ratones , Ratones Endogámicos BALB C , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Staphylococcus aureus/patogenicidad , Telurio/farmacología , Regulación hacia Arriba/fisiología , Virulencia
10.
Nat Commun ; 13(1): 2477, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513365

RESUMEN

SCCmec is a large mobile genetic element that includes the mecA gene and confers resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA). There is evidence that SCCmec disseminates among staphylococci, but the transfer mechanisms are unclear. Here, we show that two-component systems mediate the upregulation of natural competence genes in S. aureus under biofilm growth conditions, and this enhances the efficiency of natural transformation. We observe SCCmec transfer via natural transformation from MRSA, and from methicillin-resistant coagulase-negative staphylococci, to methicillin-sensitive S. aureus. The process requires the SCCmec recombinase genes ccrAB, and the stability of the transferred SCCmec varies depending on SCCmec types and recipients. Our results suggest that natural transformation plays a role in the transfer of SCCmec and possibly other mobile genetic elements in S. aureus biofilms.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Proteínas Bacterianas/genética , Biopelículas , Humanos , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/genética , Staphylococcus/genética , Staphylococcus aureus/genética
11.
J Bacteriol ; 192(3): 896-900, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933364

RESUMEN

Lactobacillus plantarum ctsR was characterized. ctsR was found to be cotranscribed with clpC and induced in response to various abiotic stresses. ctsR deletion conferred a heat-sensitive phenotype with peculiar cell morphological features. The transcriptional pattern of putative CtsR regulon genes was examined in the Delta ctsR mutant. Direct CtsR-dependent regulation was demonstrated by DNA-binding assays using recombinant CtsR and the promoters of the ctsR-clpC operon and hsp1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Lactobacillus plantarum/metabolismo , Regulón/fisiología , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Choque Térmico , Lactobacillus plantarum/genética , Lactobacillus plantarum/ultraestructura , Microscopía de Fuerza Atómica , Regiones Promotoras Genéticas/genética , Unión Proteica , Regulón/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura
12.
Mol Microbiol ; 73(2): 194-211, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19508281

RESUMEN

We have characterized the master regulator of cysteine metabolism, CymR, in Staphylococcus aureus. CymR repressed the transcription of genes involved in pathways leading to cysteine formation. Eight direct DNA targets were identified using gel-shift or footprinting experiments. Comparative transcriptome analysis and in vitro studies indicated that CysM, the OAS-thiol-lyase, was also implicated in this regulatory system. OAS, the direct precursor of cysteine, prevents CymR-dependent binding to DNA. This study has allowed us to predict sulphur metabolism functions for previously uncharacterized S. aureus genes. We show that S. aureus is able to grow on homocysteine as the sole sulphur source suggesting efficient MccA and MccB-dependent conversion of this compound into cysteine. We propose that SA1850 is a new thiosulphate transporter and that TcyP and TcyABC are l-cystine transporters. CymR directly controls the use of sulphur sources of human origin such as taurine and homocysteine. The cymR mutant also displayed a reduced capacity to form biofilms, indicating that CymR is involved in controlling this process in S. aureus via an ica-independent mechanism. These data indicate that fine-tuning of sulphur metabolism plays an important part in the physiology of this major pathogen and its adaptation to environmental conditions and survival in the host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Proteínas Represoras/metabolismo , Staphylococcus aureus/genética , Azufre/metabolismo , Proteínas Bacterianas/genética , Cistina/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , ARN Bacteriano/genética , Proteínas Represoras/genética , Staphylococcus aureus/metabolismo
13.
J Bacteriol ; 191(5): 1688-94, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19074391

RESUMEN

FtsH proteins have dual chaperone-protease activities and are involved in protein quality control under stress conditions. Although the functional role of FtsH proteins has been clearly established, the regulatory mechanisms controlling ftsH expression in gram-positive bacteria remain largely unknown. Here we show that ftsH of Lactobacillus plantarum WCFS1 is transiently induced at the transcriptional level upon a temperature upshift. In addition, disruption of ftsH negatively affected the growth of L. plantarum at high temperatures. Sequence analysis and mapping of the ftsH transcriptional start site revealed a potential operator sequence for the CtsR repressor, partially overlapping the -35 sequence of the ftsH promoter. In order to verify whether CtsR is able to recognize and bind the ftsH promoter, CtsR proteins of Bacillus subtilis and L. plantarum were overproduced, purified, and used in DNA binding assays. CtsR from both species bound specifically to the ftsH promoter, generating a single protein-DNA complex, suggesting that CtsR may control the expression of L. plantarum ftsH. In order to confirm this hypothesis, a DeltactsR mutant strain of L. plantarum was generated. Expression of ftsH in the DeltactsR mutant strain was strongly upregulated, indicating that ftsH of L. plantarum is negatively controlled by CtsR. This is the first example of an ftsH gene controlled by the CtsR repressor, and the first of the low-G+C gram-positive bacteria where the regulatory mechanism has been identified.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Respuesta al Choque Térmico , Lactobacillus plantarum/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Proteasas ATP-Dependientes/genética , Proteínas Bacterianas/genética , Sitios de Unión , Eliminación de Gen , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiología , Mutación , Regiones Promotoras Genéticas , Regulón , Proteínas Represoras/genética
14.
J Bacteriol ; 191(13): 4070-81, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19395491

RESUMEN

Staphylococcus aureus is a common human cutaneous and nasal commensal and a major life-threatening pathogen. Adaptation to the different environments encountered inside and outside the host is a crucial requirement for survival and colonization. We identified and characterized a eukaryotic-like serine/threonine kinase with three predicted extracellular PASTA domains (SA1063, or Stk1) and its associated phosphatase (SA1062, or Stp1) in S. aureus. Biochemical analyses revealed that Stk1 displays autokinase activity on threonine and serine residues and is localized to the membrane. Stp1 is a cytoplasmic protein with manganese-dependent phosphatase activity toward phosphorylated Stk1. In-frame deletions of the stk1 and stp1 genes were constructed in S. aureus strain 8325-4. Phenotypic analyses of the mutants revealed reduced growth of the stk1 mutant in RPMI 1640 defined medium that was restored when adenine was added to the medium. Furthermore, the stk1 mutant displayed increased resistance to Triton X-100 and to fosfomycin, suggesting modifications in cell wall metabolism. The stk1 mutant was tested for virulence in a mouse pyelonephritis model and found to be strongly reduced for survival in the kidneys (approximately 2-log-unit decrease) compared to the parental strain. Renal histopathological analyses showed severe inflammatory lesions in mice infected with the parental S. aureus SH1000 strain, whereas the Deltastk1 mutant led to only minimal renal lesions. These results confirm the important role of Stk1 for full expression of S. aureus pathogenesis and suggest that phosphorylation levels controlled by stk1 are essential in controlling bacterial survival within the host.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Femenino , Fosfomicina/farmacología , Prueba de Complementación Genética , Immunoblotting , Manganeso/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Mutación , Octoxinol/farmacología , Operón/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Virulencia/genética
15.
Biochemistry ; 48(40): 9372-83, 2009 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-19711984

RESUMEN

A comparative study was designed to evaluate the staphylococcidal efficiency of two sequence-related plasticins from the dermaseptin superfamily we screened previously. Their bactericidal activities against Staphylococcus aureus as well as their chemotactic potential were investigated. The impact of the GraS/GraR two-component system involved in regulating resistance to cationic antimicrobial peptides (CAMPs) was evaluated. Membrane disturbing activity was quantified by membrane depolarization assays using the diS-C3 probe and by membrane integrity assays measuring beta-galactosidase activity with recombinant strain ST1065 reflecting compromised membranes and cytoplasmic leakage. Interactions of plasticins with membrane models composed of either zwitterionic lipids mimicking the S. aureus membrane of CAMP-resistant strains or anionic lipids mimicking the negative charge-depleted membrane of CAMP-sensitive strains were analyzed by jointed Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and differential scanning calorimetry (DSC) to yield detailed information about the macroscopic interfacial organization, in situ conformation, orientation of the peptides at the lipid-solvent interface, and lipid-phase disturbance. We clearly found evidence of distinct interfacial behaviors of plasticins we linked to the distribution of charges along the peptides and structural interconversion properties at the membrane interface. Our results also suggest that amidation might play a key role in GraS/GraR-mediated CAMP sensing at the bacterial surface.


Asunto(s)
Antibacterianos/química , Antibacterianos/toxicidad , Proteínas del Ojo/química , Proteínas del Ojo/toxicidad , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/toxicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Adulto , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/toxicidad , Permeabilidad de la Membrana Celular/efectos de los fármacos , Quimiotaxis de Leucocito/efectos de los fármacos , Farmacorresistencia Bacteriana , Proteínas del Ojo/antagonistas & inhibidores , Inhibidores de Crecimiento/antagonistas & inhibidores , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/toxicidad , Humanos , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Conformación Proteica , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus haemolyticus/efectos de los fármacos , Staphylococcus haemolyticus/crecimiento & desarrollo
16.
Mol Microbiol ; 70(6): 1307-22, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19019149

RESUMEN

The WalK/WalR (aka YycG/YycF) two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved and specific to low G+C Gram-positive bacteria, including a number of important pathogens. An unusual feature is that this system is essential for viability in most of these bacteria. Recent studies have revealed conserved functions for this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism, that we have accordingly renamed WalK/WalR. Here we review the cellular role of the WalK/WalR TCS in different bacterial species, focusing on the function of genes in its regulon, as well as variations in walRK operon structure and the composition of its regulon. We also discuss the nature of its essentiality and the potential type of signal being sensed. The WalK histidine kinase of B. subtilis has been shown to localize to the divisome and we suggest that the WalKR system acts as an information conduit between extracytoplasmic cellular structures and intracellular processes required for their synthesis, playing a vital role in effectively co-ordinating peptidoglycan plasticity with the cell division process.


Asunto(s)
Pared Celular/metabolismo , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/genética , Operón/fisiología , Proteínas Quinasas/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Pared Celular/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Histidina Quinasa , Homeostasis , Peptidoglicano/metabolismo , Proteínas Quinasas/genética , Regulón , Transducción de Señal
17.
Mol Microbiol ; 70(6): 1342-57, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19019159

RESUMEN

DegU is considered to be an orphan response regulator in Listeria monocytogenes since the gene encoding the cognate histidine kinase DegS is absent from the genome. We have previously shown that DegU is involved in motility, chemotaxis and biofilm formation and contributes to L. monocytogenes virulence. Here, we have investigated the role of DegU phosphorylation in Listeria and shown that DegS of Bacillus subtilis can phosphorylate DegU of L. monocytogenes in vitro. We introduced the B. subtilis degS gene into L. monocytogenes, and showed that this leads to highly increased expression of motility and chemotaxis genes, in a DegU-dependent fashion. We inactivated the predicted phosphorylation site of DegU by replacing aspartate residue 55 with asparagine and showed that this modified protein (DegU(D55N)) is no longer phosphorylated by DegS in vitro. We show that although the unphosphorylated form of DegU retains much of its activity in vivo, expression of motility and chemotaxis genes is lowered in the degU(D55N) mutant. We also show that the small-molecular-weight metabolite acetyl phosphate is an efficient phosphodonor for DegU in vitro and our evidence suggests this is also true in vivo. Indeed, a L. monocytogenesDeltaptaDeltaackA mutant that can no longer synthesize acetyl phosphate was found to be strongly affected in chemotaxis and motility gene expression and biofilm formation. Our findings suggest that phosphorylation by acetyl phosphate could play an important role in modulating DegU activity in vivo, linking its phosphorylation state to the metabolic status of L. monocytogenes.


Asunto(s)
Acetato Quinasa/metabolismo , Proteínas Bacterianas/fisiología , Quimiotaxis , Listeria monocytogenes/fisiología , Organofosfatos/metabolismo , Fosfato Acetiltransferasa/metabolismo , Acetato Quinasa/genética , Asparagina/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quimiotaxis/genética , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/enzimología , Listeria monocytogenes/genética , Mutación , Fosfato Acetiltransferasa/genética , Fosforilación , Transcripción Genética
18.
Adv Exp Med Biol ; 631: 214-28, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18792692

RESUMEN

In order to survive, bacteria have developed avariety of highly sophisticated and sensitive signal transduction pathways with which they adapt their genetic expression to meet the challenges of their ever-changing surroundings. These mechanisms enable bacterial cells to communicate with their environment, their hosts and each other, allowing them adopt specific responses, or develop specialised structures such as biofilms or spores to ensure survival, colonization of their ecological niches and dissemination. As highlighted in this book, the so-called two-component systems (TCSs) are one of the most widespread and efficient strategies used for this purpose, where signal acquisition involves autophosphorylation of a sensor histidine kinase and transduction takes place when the kinase phosphorylates its cognate response regulator protein, leading in turn to specific alteration ofgene expression. In their simplest form, TCSs elegantly combine sensing, transducing and transcription activation modules within two proteins, effectively coupling external signals to genetic adaptation. The high degree of conservation among TCS phosphotransfer domains, their ubiquitous nature and the fact that several are essential for cell viability has made them an attractive target for novel classes of antimicrobial compounds. The WalK/WalR (aka YycG/YycF) two-component system, originally identified in Bacillus subtilis, is very highly conserved and specific to low G + C Gram-positive bacteria, including several pathogens such as Staphylococcus aureus. While this system is essential for cell viability, both the nature of its regulon and its physiological role had remained mostly uncharacterized. A number of recent studies have now unveiled a conserved function for this system in different bacteria, defining this signal transduction pathway as a master regulatory system for cell wall metabolism, which we have accordingly renamed WalK/WalR. This review will focus on the cellular function of the WalK/WalR TCS in different bacterial species and the attractive target it constitutes for novel classes of antimicrobial compounds.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/fisiología , Peptidoglicano/metabolismo , Proteínas Quinasas/fisiología , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Bacterias/genética , Bacterias/patogenicidad , Proteínas Bacterianas/genética , Secuencia de Bases , Pared Celular/metabolismo , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Histidina Quinasa , Datos de Secuencia Molecular , Operón , Proteínas Quinasas/genética , Homología de Secuencia de Aminoácido , Virulencia/genética , Virulencia/fisiología
19.
Front Microbiol ; 9: 3135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619203

RESUMEN

Oenococcus oeni is a lactic acid bacterium responsible for malolactic fermentation of wine. While many stress response mechanisms implemented by O. oeni during wine adaptation have been described, little is known about their regulation. CtsR is the only regulator of stress response genes identified to date in O. oeni. Extensively characterized in Bacillus subtilis, the CtsR repressor is active as a dimer at 37°C and degraded at higher temperatures by a proteolytic mechanism involving two adapter proteins, McsA and McsB, together with the ClpCP complex. The O. oeni genome does not encode orthologs of these adapter proteins and the regulation of CtsR activity remains unknown. In this study, we investigate CtsR function in O. oeni by using antisense RNA silencing in vivo to modulate ctsR gene expression. Inhibition of ctsR gene expression by asRNA leads to a significant loss in cultivability after heat shock (58%) and acid shock (59%) highlighting the key role of CtsR in the O. oeni stress response. Regulation of CtsR activity was studied using a heterologous expression system to demonstrate that O. oeni CtsR controls expression and stress induction of the O. oeni hsp18 gene when produced in a ctsR-deficient B. subtilis strain. Under heat stress conditions, O. oeni CtsR acts as a temperature sensor and is inactivated at growth temperatures above 33°C. Finally, using an E. coli bacterial two-hybrid system, we showed that CtsR and ClpL1 interact, suggesting a key role for ClpL1 in controlling CtsR activity in O. oeni.

20.
mBio ; 9(5)2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228237

RESUMEN

Staphylococcus aureus causes various diseases ranging from skin and soft tissue infections to life-threatening infections. Adaptation to the different host niches is controlled by a complex network of transcriptional regulators. Global profiling of condition-dependent transcription revealed adaptation of S. aureus HG001 at the levels of transcription initiation and termination. In particular, deletion of the gene encoding the Rho transcription termination factor triggered a remarkable overall increase in antisense transcription and gene expression changes attributable to indirect regulatory effects. The goal of the present study was a detailed comparative analysis of S. aureus HG001 and its isogenic rho deletion mutant. Proteome analysis revealed significant differences in cellular and extracellular protein profiles, most notably increased amounts of the proteins belonging to the SaeR regulon in the Rho-deficient strain. The SaeRS two-component system acts as a major regulator of virulence gene expression in staphylococci. Higher levels of SaeRS-dependent virulence factors such as adhesins, toxins, and immune evasion proteins in the rho mutant resulted in higher virulence in a murine bacteremia model, which was alleviated in a rho complemented strain. Inhibition of Rho activity by bicyclomycin, a specific inhibitor of Rho activity, also induced the expression of SaeRS-dependent genes, at both the mRNA and protein levels, to the same extent as observed in the rho mutant. Taken together, these findings indicate that activation of the Sae system in the absence of Rho is directly linked to Rho's transcription termination activity and establish a new link between antibiotic action and virulence gene expression in S. aureusIMPORTANCE The major human pathogen Staphylococcus aureus is a widespread commensal bacterium but also the most common cause of nosocomial infections. It adapts to the different host niches through a complex gene regulatory network. We show here that the Rho transcription termination factor, which represses pervasive antisense transcription in various bacteria, including S. aureus, plays a role in controlling SaeRS-dependent virulence gene expression. A Rho-deficient strain produces larger amounts of secreted virulence factors in vitro and shows increased virulence in mice. We also show that treatment of S. aureus with the antibiotic bicyclomycin, which inhibits Rho activity and is effective against Gram-negative bacteria, induces the same changes in the proteome as observed in the Rho-deficient strain. Our results reveal for the first time a link between transcription termination and virulence regulation in S. aureus, which implies a novel mechanism by which an antibiotic can modulate the expression of virulence factors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Factor Rho/metabolismo , Staphylococcus aureus/genética , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Factores de Virulencia/biosíntesis , Animales , Antibacterianos/metabolismo , Bacteriemia/microbiología , Bacteriemia/patología , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Proteínas Quinasas/genética , Proteoma/análisis , Regulón , Factor Rho/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Factores de Transcripción/genética , Virulencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda