Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Chem Lett ; 20(4): 2277-2310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431715

RESUMEN

The increasing global industrialization and over-exploitation of fossil fuels has induced the release of greenhouse gases, leading to an increase in global temperature and causing environmental issues. There is therefore an urgent necessity to reach net-zero carbon emissions. Only 4.5% of countries have achieved carbon neutrality, and most countries are still planning to do so by 2050-2070. Moreover, synergies between different countries have hampered synergies between adaptation and mitigation policies, as well as their co-benefits. Here, we present a strategy to reach a carbon neutral economy by examining the outcome goals of the 26th summit of the United Nations Climate Change Conference of the Parties (COP 26). Methods have been designed for mapping carbon emissions, such as input-output models, spatial systems, geographic information system maps, light detection and ranging techniques, and logarithmic mean divisia. We present decarbonization technologies and initiatives, and negative emissions technologies, and we discuss carbon trading and carbon tax. We propose plans for carbon neutrality such as shifting away from fossil fuels toward renewable energy, and the development of low-carbon technologies, low-carbon agriculture, changing dietary habits and increasing the value of food and agricultural waste. Developing resilient buildings and cities, introducing decentralized energy systems, and the electrification of the transportation sector is also necessary. We also review the life cycle analysis of carbon neutral systems.

2.
Sci Total Environ ; 849: 157755, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35921924

RESUMEN

The energy sector contributes significantly to the emission of greenhouse gases (GHGs) due to the use of fossil fuels which leads to climate change problems. Worldwide, there is a shift from fossil fuel-based energy to cleaner energy sources such as solar, wind, geothermal, and biomass. Wind energy is one of the promising cleaner energy sources as it is feasible and cost-effective. However, the development of wind farms causes impacts on sustainability aspects. This article aims to review the impacts of wind energy generation on environmental, economic, and social aspects of sustainability and their mitigation strategies. The aim was achieved by reviewing recent research papers on different aspects of wind energy sustainability. The environmental impacts reviewed include the effects on avian life, noise pollution, visual impacts, microclimate and vegetation. Apart from environmental impacts, wind energy generation faces issues in energy and financial sustainability, such as the wind power fluctuation, technology lagging and use of fixed feed-in tariff contracts that do not consider wind energy advancement and end-of-life management. We discussed that turbine deterrents, automatic curtailment, low gloss blades and sustainable siting of wind farms as some of the effective ways to combat wind energy environmental impacts. In addition, we discussed that energy storage systems, setting up microgrids, combination of solar, wind and energy storage, and renewable energies policies are some of the ways to combat wind energy's economic and energy impacts. Lastly, the recommendations, and future perspectives on wind energy generation sustainability are discussed.


Asunto(s)
Fuentes Generadoras de Energía , Gases de Efecto Invernadero , Combustibles Fósiles , Microclima , Energía Renovable , Viento
3.
Sci Total Environ ; 809: 151657, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34793787

RESUMEN

The impacts of COVID-19 on global environmental pollution since its onset in December 2019 require special attention. The rapid spread of COVID-19 globally has led countries to lock down cities, restrict traffic travel and impose strict safety measures, all of which have implications on the environment. This review aims to systematically and comprehensively present and analyze the positive and negative impacts of COVID-19 on global environmental pollution and carbon emissions. It also aims to propose strategies to prolong the beneficial, while minimize the adverse environmental impacts of COVID-19. It systematically and comprehensively reviewed more than 100 peer-reviewed papers and publications related to the impacts of COVID-19 on air, water and soil pollution, carbon emissions as well as the sustainable strategies forward. It revealed that PM2.5, PM10, NO2, and CO levels reduced in most regions globally but SO2 and O3 levels increased or did not show significant changes. Surface water, coastal water and groundwater quality improved globally during COVID-19 lockdown except few reservoirs and coastal areas. Soil contamination worsened mainly due to waste from the use of personal protective equipment particularly masks and the packaging, besides household waste. Carbon emissions were reduced primarily due to travel restrictions and less usage of utilities though emissions from certain ships did not change significantly to maintain supply of the essentials. Sustainable strategies post-COVID-19 include the development and adoption of nanomaterial adsorption and microbial remediation technologies, integrated waste management measures, "sterilization wave" technology and energy-efficient technologies. This review provides important insight and novel coverage of the environmental implications of COVID-19 in more than 25 countries across different global regions to permit formulation of specific pollution control and sustainability strategies in the COVID-19 and post-COVID-19 eras for better environmental quality and human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Carbono , Ciudades , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Material Particulado/análisis , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda