RESUMEN
Dermal papilla (DP) cells are unique regional stem cells of the skin that induce formation of a hair follicle and its regeneration cycle. DP are multipotent stem cells; therefore we supposed that the efficiency of DPC reprogramming could exceed that of dermal fibroblasts reprogramming. We generated induced pluripotent stem cells from human DP cells using lentiviral transfection with Oct4, Sox2, Klf4, and c-Myc, and cultivation of cells both in a medium supplemented with valproic acid and at a physiological level of oxygen (5%). The efficiency of DP cells reprogramming was ~0.03%, while the efficiency of dermal fibroblast reprogramming under the same conditions was ~0.01%. Therefore, we demonstrated the suitability of DP cells as an alternative source of iPS cells.
RESUMEN
In this review the distinct aspects of somatic cell reprogramming are discussed. The molecular mechanisms of generation of induced pluripotent stem (iPS) cells from somatic cells via the introduction of transcription factors into adult somatic cells are considered. Particular attention is focused on the generation of iPS cells without genome modifications via the introduction of the mRNA of transcription factors or the use of small molecules. Furthermore, the strategy of direct reprogramming of somatic cells omitting the generation of iPS cells is considered. The data concerning the differences between ES and iPS cells and the problem of epigenetic memory are also discussed. In conclusion, the possibility of using iPS cells in regenerative medicine is considered.