RESUMEN
The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin ß1. A point mutation in this motif markedly reduces TF-FVIIa association with integrins, attenuates integrin translocation into early endosomes, and reduces delayed mitogen-activated protein kinase phosphorylation required for the induction of proangiogenic cytokines. Pharmacologic or genetic blockade of the small GTPase ADP-ribosylation factor 6 (arf6) that regulates integrin trafficking increases availability of TF-FVIIa with procoagulant activity on the cell surface, while inhibiting TF-FVIIa signaling that leads to proangiogenic cytokine expression and tumor cell migration. These experiments delineate the structural basis for the crosstalk of the TF-FVIIa complex with integrin trafficking and suggest a crucial role for endosomal PAR2 signaling in pathways of tissue repair and tumor biology.
Asunto(s)
Factor VIIa/química , Factor VIIa/metabolismo , Integrina beta1/metabolismo , Dominios y Motivos de Interacción de Proteínas , Receptor PAR-2/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Sitios de Unión/genética , Células Cultivadas , Factor VIIa/genética , Humanos , Integrina beta1/química , Ratones , Células 3T3 NIH , Neovascularización Fisiológica/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas , Receptor PAR-2/genética , Transducción de Señal/genética , Tromboplastina/química , Tromboplastina/metabolismoRESUMEN
The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. Thus, targeting glycosylation changes in cancer is likely to provide not only better insight into the roles of carbohydrates in biological systems, but also facilitate the development of new molecular probes for bioanalytical and biomedical applications. In the reported study, we have synthesized lectinomimics based on odorranalectin 1; the smallest lectin-like cyclic peptide isolated from the frog Odorrana grahami skin, and assessed the ability of these peptides to bind specific carbohydrates on molecular and cellular levels. In addition, we have shown that the disulfide bond found in 1 can be replaced with a lactam bridge. However, the orientation of the lactam bridge, peptides 2 and 3, influenced cyclic peptide's conformation and thus these peptides' ability to bind carbohydrates. Naturally occurring 1 and its analog 3 that adopt similar conformation in water bind preferentially L-fucose, and to a lesser degree D-galactose and N-acetyl-D-galactosamine, typically found within the mucin O-glycan core structures. In cell-based assays, peptides 1 and 3 showed a similar binding profile to Aleuria aurantia lectin and these two peptides inhibited the migration of metastatic breast cancer cell lines in a Transwell assay. Altogether, the reported data demonstrate the feasibility of designing lectinomimics based on cyclic peptides.
Asunto(s)
Sistemas de Liberación de Medicamentos , Lectinas , Neoplasias/metabolismo , Péptidos Cíclicos/síntesis química , Peptidomiméticos/síntesis química , Polisacáridos/metabolismo , Unión Competitiva , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fucosa/agonistas , Fucosa/metabolismo , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Lactamas/química , Lectinas/química , Lectinas/metabolismo , Células MCF-7 , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacología , Polisacáridos/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-ActividadRESUMEN
Constitutive expression of tissue factor (TF) by cancer cells triggers local activation of the coagulation cascade and promotes breast cancer progression through cell signaling involving protease activated receptor (PAR)2. In human breast cancer, TF and PAR2 are up-regulated and TF cytoplasmic domain phosphorylation is correlated with relapse. Here we show that cancer cell PAR2 signaling promotes angiogenesis independent of PAR2 phosphorylation at the recognized ß-arrestin recruitment site. Similar to PAR2(-/-) mice, TF cytoplasmic domain-deleted (TF(ΔCT)) mice have delayed spontaneous breast cancer development in the polyoma middle T model. Simultaneous deletion of PAR2 in TF(ΔCT) mice did not further delay tumor appearance, consistent with overlapping roles of TF and PAR2 in promoting the angiogenic switch in early stages of breast cancer. In advanced carcinomas, tumor-associated macrophages were reduced in TF(ΔCT) and TF(ΔCT)/PAR2(-/-) mice, and increased tumor vessel diameters of TF(ΔCT) mice were partially reversed by PAR2-deficiency, indicating that the TF cytoplasmic domain has additional roles that are interdependent with PAR2 signaling in regulating host angiogenic responses. These experiments demonstrate a crosstalk of tumor cell TF cytoplasmic domain and PAR2 signaling and provide a possible mechanism for the close correlation between TF phosphorylation and cancer recurrence of TF and PAR2-positive clinical breast cancer.
Asunto(s)
Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/patología , Neovascularización Patológica , Receptor PAR-2/fisiología , Tromboplastina/fisiología , Animales , Femenino , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de SeñalRESUMEN
The plasminogen activation system regulates the activity of the serine protease, plasmin. The role of plasminogen receptors in cancer progression is being increasingly appreciated as key players in modulation of the tumor microenvironment. The interaction of plasminogen with cells to promote plasminogen activation requires the presence of proteins exposing C-terminal lysines on the cell surface. Plg-RKT is a structurally unique plasminogen receptor because it is an integral membrane protein that is synthesized with and binds plasminogen via a C-terminal lysine exposed on the cell surface. Here, we have investigated the expression of Plg-RKT in human breast tumors and human breast cancer cell lines. Breast cancer progression tissue microarrays were probed with anti-Plg-RKT mAB and we found that Plg-RKT is widely expressed in human breast tumors, that its expression is increased in tumors that have spread to draining lymph nodes and distant organs, and that Plg-RKT expression is most pronounced in hormone receptor (HR)-positive tumors. Plg-RKT was detected by Western blotting in human breast cancer cell lines. By flow cytometry, Plg-RKT cell surface expression was highest on the most aggressive tumor cell line. Future studies are warranted to address the functions of Plg-RKT in breast cancer.
Asunto(s)
Neoplasias de la Mama , Receptores de Superficie Celular , Neoplasias de la Mama/genética , Membrana Celular/metabolismo , Femenino , Humanos , Plasminógeno/metabolismo , Receptores de Superficie Celular/genética , Serina Proteasas , Microambiente TumoralRESUMEN
Hemostasis initiates angiogenesis-dependent wound healing, and thrombosis is frequently associated with advanced cancer. Although activation of coagulation generates potent regulators of angiogenesis, little is known about how this pathway supports angiogenesis in vivo. Here we show that the tissue factor (TF)-VIIa protease complex, independent of triggering coagulation, can promote tumor and developmental angiogenesis through protease-activated receptor-2 (PAR-2) signaling. In this context, the TF cytoplasmic domain negatively regulates PAR-2 signaling. Mice from which the TF cytoplasmic domain has been deleted (TF Delta CT mice) show enhanced PAR-2-dependent angiogenesis, in synergy with platelet-derived growth factor BB (PDGF-BB). Ocular tissue from diabetic patients shows PAR-2 colocalization with phosphorylated TF specifically on neovasculature, suggesting that phosphorylation of the TF cytoplasmic domain releases its negative regulatory control of PAR-2 signaling in angiogenesis. Targeting the TF-VIIa signaling pathway may thus enhance the efficacy of angiostatic treatments for cancer and neovascular eye diseases.
Asunto(s)
Neovascularización Patológica , Neovascularización Fisiológica , Tromboplastina/fisiología , Animales , Aorta/patología , Oftalmopatías/patología , Oftalmopatías/fisiopatología , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Estructura Terciaria de Proteína , Receptor PAR-2/fisiología , Transducción de Señal , Tromboplastina/química , Tromboplastina/genéticaRESUMEN
The gene for phosphatidylinositol-4-phosphate adaptor-2 (FAPP2) encodes a cytoplasmic lipid transferase with a plekstrin homology domain that has been implicated in vesicle maturation and transport from trans-Golgi to the plasma membrane. The introduction of ribozymes targeting the FAPP2 gene in colon carcinoma cells induced their apoptosis in the presence of Fas agonistic antibody. Furthermore, by quantitative PCR we showed that a siRNA specific to FAPP2, but not a randomized siRNA control, reduced FAPP2 gene expression in tumor cells. Transfection of FAPP2 siRNA into human tumor cells then incubated with FasL resulted in reduction of viable cell numbers. Also, FAPP2 siRNA transfected glioma and breast tumor cells showed significant increases in apoptosis upon incubation with soluble FasL, but the apoptosis did not necessarily correlate with increased Fas expression. These data demonstrate a previously unknown role for FAPP2 in conferring resistance to apoptosis and indicate that FAPP2 may be a target for cancer therapy.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Apoptosis , Proteína Ligando Fas/agonistas , Neoplasias/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Anticuerpos/inmunología , Apoptosis/genética , Línea Celular Tumoral , Regulación hacia Abajo , Proteína Ligando Fas/inmunología , Proteína Ligando Fas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , ARN Interferente Pequeño/genéticaRESUMEN
The chemokine receptor CXCR4 is functionally expressed on the cell surface of various cancer cells, and plays a role in cell proliferation and migration of these cells. Specifically, in breast cancer cells the CXCR4/CXCL12 axis has been implicated in cell migration in vitro and in metastasis in vivo, but the underlying signaling mechanisms are incompletely understood. The xenograft-derived MDA-MB-231 breast cancer cell line (231mfp), which was shown previously to grow more aggressively than the parent cells, showed increased CXCR4 expression at the mRNA, total protein and cell surface expression level. This correlated with an enhanced response to CXCL12, specifically in augmented and prolonged Akt activation in a G(i), Src family kinase and PI-3 kinase dependent fashion. 231mfp cells migrated towards CXCL12--in contrast to the parent cell line--and this chemotaxis was blocked by inhibition of G(i), Src family kinases, PI-3 kinase and interestingly, Akt itself, as could be shown with two pharmacological inhibitors, a dominant negative Akt construct and with Akt shRNA. Collectively, we have demonstrated that prolonged Akt activation is an important signaling pathway for breast cancer cells expressing CXCR4 and is necessary for CXCL12-dependent cell migration.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Quimiocina CXCL12/metabolismo , Quimiotaxis , Activación Enzimática , Humanos , Metaloproteinasas de la Matriz/metabolismo , Modelos Biológicos , Toxina del Pertussis/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores CXCR4/metabolismo , Transducción de SeñalRESUMEN
OBJECTIVE: Tissue factor (TF) initiates coagulation and indirectly triggers thrombin-dependent protease activated receptor (PAR) signaling. The TF-VIIa complex also directly cleaves PAR2 and promotes angiogenesis in vitro in TF cytoplasmic domain-deleted (TF(deltaCT)) mice. Here we address the effect of PAR1 and PAR2 deficiency on angiogenesis in vivo. METHODS AND RESULTS: In hypoxia-driven angiogenesis of oxygen induced retinopathy (OIR), wild-type, PAR1-/-, PAR2-/-, and TF(deltaCT) mice showed a comparable regression of the superficial vascular plexus during the initial exposure of mice to hyperoxia. However, TF(deltaCT) mice revascularized areas of central vaso-obliteration significantly faster than wild-type animals. Pharmacological inhibition of the TF-VIIa complex, but not of Xa, and blockade of tyrosine kinase receptor pathways with Gleevec reversed accelerated angiogenesis of TF(deltaCT) mice to revascularization rates observed in wild-type mice. Genetic deletion of PAR2, but not of PAR1, abolished enhanced revascularization of TF(deltaCT) mice. PAR1 knock-out animals were indistinguishable from wild-type mice in the model of retinal neoangiogenesis and angiogenesis-dependent subcutaneous tumor growth was unaltered in PAR1- and PAR2-deficient animals. CONCLUSION: Loss of the TF cytoplasmic domain results in accelerated hypoxia-induced angiogenesis mediated by TF-VIIa signaling. PAR2 signaling is sufficient for this proangiogenic effect without apparent contributions of mouse host cell PAR1.
Asunto(s)
Hiperoxia/metabolismo , Hipoxia/complicaciones , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Neovascularización Retiniana/etiología , Vasos Retinianos/metabolismo , Transducción de Señal , Tromboplastina/metabolismo , Animales , Benzamidas , Inhibidores de Factor de Coagulación Sanguínea/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Factor VIIa/metabolismo , Hiperoxia/inducido químicamente , Hiperoxia/patología , Hipoxia/metabolismo , Hipoxia/patología , Mesilato de Imatinib , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Oxígeno , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Receptor PAR-1/deficiencia , Receptor PAR-1/genética , Receptor PAR-2/deficiencia , Receptor PAR-2/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Vasos Retinianos/patología , Transducción de Señal/efectos de los fármacos , Tromboplastina/genética , Factores de TiempoRESUMEN
Direct proliferative effects of estrogen (E(2)) on estrogen receptor-positive tumors are well documented; however, the potential for E(2) to mediate effects selective for the host (i.e., angiogenesis, vascular permeability, or stromal effects), which influence tumor growth and/or metastasis, has received less attention. In this study, we examine the capacity for E(2) to promote tumor growth and/or metastasis independent of direct effects on tumor cells. In these studies, we distinguish host versus tumor compartment components of E(2) action in tumor growth and metastasis by analysis of E(2)-nonresponsive tumor cells implanted in ovariectomized (OVX) mice that contain s.c. implants of placebo (OVX) or E(2)-containing slow-release pellets (OVX + E(2)). We show that the D121 lung carcinoma cell line is E(2)-nonresponsive, and following s.c. implantation in OVX versus OVX + E(2) mice, E(2) action on the host compartment leads to an increase in spontaneous metastasis but not primary tumor growth or neovascularization. Similarly, experimental lung metastasis of E(2)-nonresponsive 4T1 mammary carcinoma cells also leads to increased tumor burden in the lungs of OVX + E(2) mice. These results suggest that the E(2) status of the host compartment influences late steps in tumor cell metastasis that can provide important insights into the role of E(2) in the tumor versus host compartments.
Asunto(s)
Neoplasias de la Mama/patología , Estradiol/toxicidad , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Neoplasias Hormono-Dependientes/secundario , Animales , Neoplasias de la Mama/irrigación sanguínea , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Receptor alfa de Estrógeno/biosíntesis , Femenino , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Neoplasias Mamarias Experimentales/irrigación sanguínea , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Hormono-Dependientes/irrigación sanguínea , Neoplasias Hormono-Dependientes/inducido químicamente , Neoplasias Hormono-Dependientes/patología , Neovascularización Patológica/patologíaRESUMEN
The effects of the pleiotropic serine protease thrombin on tumor cells are commonly thought to be mediated by the thrombin receptor protease-activated receptor 1 (PAR1). We demonstrate here that PAR1 activation has a role in experimental metastasis using the anti-PAR1 antibodies ATAP2 and WEDE15, which block PAR1 cleavage and activation. Thrombin also stimulates chemokinesis of human melanoma cells toward fibroblast conditioned media and soluble matrix proteins. Thrombin-enhanced migration is abolished by anti-PAR1 antibodies, demonstrating that PAR1 cleavage and activation are required. The PAR1-specific agonist peptide TFLLRNPNDK, however, does not stimulate migration, indicating that PAR1 activation is not sufficient. In contrast, a combination of TFLLRNPNDK and the PAR2 agonist peptide SLIGRL mimics the thrombin effect on migration, whereas PAR2 agonist alone has no effect. Agonist peptides for the thrombin receptors PAR3 and PAR4 used alone or with PAR1 agonist also have no effect. Similarly, activation of PAR1 and PAR2 also enhances chemokinesis of prostate cancer cells. Desensitization with PAR2 agonist abolishes thrombin-enhanced cell motility, demonstrating that thrombin acts through PAR2. PAR2 is cleaved by proteases with trypsin-like specificity but not by thrombin. Thrombin enhances migration in the presence of a cleavage-blocking anti-PAR2 antibody, suggesting that thrombin activates PAR2 indirectly and independent of receptor cleavage. Treatment of melanoma cells with trypsin or PAR2 agonist peptide enhances experimental metastasis. Together, these data confirm a role for PAR1 in migration and metastasis and demonstrate an unexpected role for PAR2 in thrombin-dependent tumor cell migration and in metastasis.
Asunto(s)
Movimiento Celular , Melanoma/metabolismo , Melanoma/patología , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Metástasis de la Neoplasia , Receptor PAR-1/agonistas , Receptor PAR-1/antagonistas & inhibidores , Receptor PAR-2/agonistas , Trombina/farmacologíaRESUMEN
Plasminogen (PLG) is the zymogen of plasmin, the major enzyme that degrades fibrin clots. In addition to its binding and activation on fibrin clots, PLG also specifically interacts with cell surfaces where it is more efficiently activated by PLG activators, compared with the reaction in solution. This results in association of the broad-spectrum proteolytic activity of plasmin with cell surfaces that functions to promote cell migration. Here, we review emerging data establishing a role for PLG, plasminogen receptors and the newly discovered plasminogen receptor, Plg-RKT, in macrophage recruitment in the inflammatory response, and we address mechanisms by which the interplay between PLG and its receptors regulates inflammation.
Asunto(s)
Macrófagos/metabolismo , Plasminógeno/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Macrófagos/patología , Datos de Secuencia Molecular , Peritonitis/patología , Plasminógeno/química , Proteómica , Receptores de Superficie Celular/químicaRESUMEN
The importance of the microenvironment in breast cancer growth and progression is becoming increasingly clear. Adipocytes are abundant in the mammary microenvironment, and recent studies show that adipocytes produce endocrine, inflammatory, and angiogenic factors that have tremendous potential to affect adjacent breast cancer cells. Yet, the extent to which local adipocyte function contributes to the pathogenesis of breast cancer is largely unexplored. Here we describe a unique animal model to study interactions between adipocytes and breast cancer cells in the tumor microenvironment. Our results suggest that local interactions between adipocytes and tumor cells are sufficient to promote the growth of hormone-dependent breast cancer. We also demonstrate that leptin signaling in adipocytes induces aromatase expression, expected to result in higher estrogen in the microenvironment thus enabling mammary tumorigenesis.
RESUMEN
New treatments are needed for brain metastasis, which is associated with high morbidity and mortality. Two novel cellular and gene therapy modalities were evaluated in xenograft models for human breast cancer. The individual and especially the combined treatments with alloreactive cytotoxic T lymphocytes and replicating retroviral vectors coding for prodrug activating enzymes followed later with nontoxic prodrug demonstrated efficacy without off-target effects.
RESUMEN
Several markers identify cancer stem cell-like populations, but little is known about the functional roles of stem cell surface receptors in tumor progression. Here, we show that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. Mice with a hypomorphic allele of EPCR show reduced tumor growth in the PyMT-model of spontaneous breast cancer development and deletion of EPCR in established PyMT tumor cells significantly attenuates transplanted tumor take and growth. We find expansion of EPCR(+) cancer stem cell-like populations in aggressive, mammary fat pad-enhanced human triple negative breast cancer cells. In this model, EPCR-expressing cells have markedly increased mammosphere- and tumor-cell initiating activity compared to another stable progenitor-like subpopulation present at comparable frequency. We show that receptor blocking antibodies to EPCR specifically attenuate in vivo tumor growth initiated by either EPCR(+) cells or the heterogenous mixture of EPCR(+) and EPCR(-) cells. Furthermore, we have identified tumor associated macrophages as a major source for recognized ligands of EPCR, suggesting a novel mechanism by which cancer stem cell-like populations are regulated by innate immune cells in the tumor microenvironment.
Asunto(s)
Antígenos CD/metabolismo , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , Glicoproteínas/metabolismo , Receptores de Superficie Celular/metabolismo , Tejido Adiposo/metabolismo , Animales , Antígenos CD/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Análisis por Conglomerados , Modelos Animales de Enfermedad , Receptor de Proteína C Endotelial , Femenino , Perfilación de la Expresión Génica , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/genética , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Glándulas Mamarias Animales/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Trasplante Heterólogo , Carga Tumoral/genéticaRESUMEN
PURPOSE: Individual or combined strategies of cellular therapy with alloreactive CTLs (alloCTL) and gene therapy using retroviral replicating vectors (RRV) encoding a suicide prodrug activating gene were explored for the treatment of breast tumors metastatic to the brain. EXPERIMENTAL DESIGN: AlloCTL, sensitized to the HLA of MDA-MB-231 breast cancer cells, were examined in vitro for antitumor functionality toward breast cancer targets. RRV encoding the yeast cytosine deaminase (CD) gene was tested in vivo for virus spread, ability to infect, and kill breast cancer targets when exposed to 5-fluorocytosine (5-FC). Individual and combination treatments were tested in subcutaneous and intracranial xenograft models with 231BR, a brain tropic variant. RESULTS: AlloCTL preparations were cytotoxic, proliferated, and produced IFN-γ when coincubated with target cells displaying relevant HLA. In vivo, intratumorally placed alloCTL trafficked through one established intracranial 231BR focus to another in contralateral brain and induced tumor cell apoptosis. RRV-CD efficiently spread in vivo, infected 231BR and induced their apoptosis upon 5-FC exposure. Subcutaneous tumor volumes were significantly reduced in alloCTL and/or gene therapy-treated groups compared to control groups. Mice with established intracranial 231BR tumors treated with combined alloCTL and RRV-CD had a median survival of 97.5 days compared with single modalities (50-83 days); all experimental treatment groups survived significantly longer than sham-treated groups (median survivals 31.5 or 40 days) and exhibited good safety/toxicity profiles. CONCLUSION: The results indicate combining cellular and suicide gene therapies is a viable strategy for the treatment of established breast tumors in the brain.
Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Terapia Genética , Linfocitos T Citotóxicos , Adenoviridae , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Terapia Combinada , Citosina Desaminasa/genética , Citosina Desaminasa/uso terapéutico , Femenino , Flucitosina/administración & dosificación , Genes Transgénicos Suicidas/genética , Vectores Genéticos , Humanos , Ratones , Profármacos/administración & dosificaciónRESUMEN
Bone marrow hypoplasia and pancytopenia are among the most undesirable sequelae of chemotherapy for the treatment of cancer. We recently showed that hyaluronan (HA) facilitates hematopoietic recovery in tumor-free animals receiving chemotherapeutic agents. However, following a chemotherapeutic regimen in tumor-bearing animals, it is possible that residual tumor cells might respond to systemic injections of HA. Thus, in this study, we investigated the effect of HA on the regrowth of residual tumor cells following chemotherapy. As a model, we used the HCT-8 human colon carcinoma cell line, which expresses the HA receptor CD44, binds exogenous HA, and is susceptible to a chemotherapy protocol containing irinotecan and 5-fluorouracil in a human/mouse xenograft model. HCT-8 cells were implanted in severe combined immunodeficient mice, followed by irinotecan/5-fluorouracil treatment. After three rounds of chemotherapy, residual tumors were allowed to regrow in the presence or absence of HA. The dynamics of tumor regrowth in the group treated with HA was slower compared with the control group. By week 5 after tumor implantation, the difference in the size of regrown tumors was statistically significant and correlated with lower proliferation and higher apoptosis in HA-treated tumors as compared with controls. This finding provides evidence that HA treatment does not stimulate but delays the growth of residual cancer cells, which is an important parameter in establishing whether the use of HA can enhance current chemotherapeutic strategies.
Asunto(s)
Carcinoma/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Ácido Hialurónico/farmacología , Recurrencia Local de Neoplasia/prevención & control , Animales , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioterapia Adyuvante , Neoplasias del Colon/patología , Citostáticos/administración & dosificación , Citostáticos/farmacología , Esquema de Medicación , Femenino , Humanos , Ácido Hialurónico/administración & dosificación , Ratones , Ratones SCID , Modelos Biológicos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The G protein-coupled protease-activated receptors (PAR) are key signaling components for proteases in vascular biology and tumor progression. To address the contributions of PAR1 and PAR2 to breast cancer development, we established cohorts of mouse mammary tumor virus-polyoma middle T (PyMT) PAR1(-/-) and PAR2(-/-) mice, considering that the PyMT model recapitulates aspects of human disease. Appearance of palpable tumors, tumor expansion, and metastasis was indistinguishable between wild-type and PAR1(-/-) mice. PAR1(-/-) breast cancer cells were no longer responsive to thrombin in vitro, excluding compensatory up-regulation of alternative thrombin receptors and indicating that thrombin-PAR1 signaling is dispensable in breast tumor microenvironments. In contrast, palpable tumors and multifocal disease developed slower in PAR2(-/-) mice, and as a consequence of delayed tumor onset, metastasis was reduced. Analysis of early tumors showed persistence of adenomas with delayed appearance of vascularized adenocarcinomas in PAR2(-/-) mice. Furthermore, CXCL1 production by early PAR2(-/-) tumors was reduced. These results are consistent with previous xenograft data that implicated breast cancer PAR2 signaling in the induction of proangiogenic growth factors and chemokines. This study establishes that protease signaling contributes to mammary tumor development and that PAR2, rather than the thrombin receptor PAR1, plays a crucial role in the angiogenic switch.
Asunto(s)
Adenocarcinoma/fisiopatología , Antígenos Transformadores de Poliomavirus/genética , Neoplasias Mamarias Experimentales/fisiopatología , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transducción de Señal , Adenocarcinoma/irrigación sanguínea , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Neoplasias Mamarias Experimentales/irrigación sanguínea , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Reacción en Cadena de la PolimerasaRESUMEN
Coagulation activation by tissue factor (TF) is implicated in cancer progression, cancer-associated thrombosis and metastasis. The role of direct TF signaling pathways in cancer, however, remains incompletely understood. Here we address how TF contributes to primary tumor growth by using a unique pair of isotype-matched antibodies that inhibit either coagulation (monoclonal antibody [Mab]-5G9) or direct signaling (Mab-10H10). We demonstrate that the inhibitory antibody of direct TF-VIIa signaling not only blocks TF-VIIa mediated activation of PAR2, but also disrupts the interaction of TF with integrins. In epithelial and TF-expressing endothelial cells, association of TF with beta1 integrins is regulated by TF extracellular ligand binding and independent of PAR2 signaling or proteolytic activity of VIIa. In contrast, alpha3beta1 integrin association of TF is constitutive in breast cancer cells and blocked by Mab-10H10 but not by Mab-5G9. Mab-5G9 has antitumor activity in vivo, but we show here that Mab-10H10 is at least as effective in suppressing human xenograft tumors in 2 different models. Breast tumor growth was also attenuated by blocking PAR2 signaling. These results show that tumor cell TF-PAR2 signaling is crucial for tumor growth and suggest that anti-TF strategies can be applied in cancer therapy with minor impairment of TF-dependent hemostatic pathways.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/secundario , Transducción de Señal/fisiología , Tromboplastina/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , División Celular , Línea Celular Transformada , Endotelio Vascular/citología , Factor VIIa/metabolismo , Factor VIIa/farmacología , Humanos , Integrina beta1/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Ratones SCID , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transducción de Señal/inmunología , Tromboplastina/inmunología , Venas Umbilicales/citologíaRESUMEN
The PATZ1 gene encodes a transcription factor that belongs to the BTB/POZ group of transcriptional regulators and has been implicated as a transcriptional repressor. We cloned cDNA from glioma cell lines and found they expressed transcript variant 2 of PATZ1. We designed a specific siRNA against PATZ1 and showed that this siRNA, but not a control randomized siRNA, reduced PATZ1 expression in glioma cells as determined by quantitative PCR. In a panel of human glioma cell lines incubated with proapoptotic FasL, those transfected with PATZ1 siRNA displayed reduced cell numbers by the MTT colorimetric assay, relative to those transfected with randomized siRNA. Further studies showed that in 10-08-MG, U-251MG, U-87MG, and T98G cells PATZ1 siRNA significantly increased apoptosis in response to incubation with soluble FasL, as shown by a morphologic acridine orange/ethidium bromide apoptotic assay. Using an apoptosis specific cDNA microarray we further demonstrated that down-regulation of PATZ1 by siRNA resulted in the upregulation of death receptor pro-apoptotic genes including caspase 8 and Death Receptor 5 (DR5) in U-373MG cells. Since DR5 is the receptor for TRAIL we tested whether PATZ1 downregulation also sensitized cells to TRAIL-induced apoptosis and found that PATZ1 siRNA, but not control siRNA, sensitized U-251MG and T98G glioma cells to TRAIL-induced apoptosis. Altogether, these data demonstrate a previously unknown role for the transcription factor PATZ1 in conferring resistance to apoptosis and indicate that modulation of PATZ1 expression may be a therapeutic strategy for gliomas.