RESUMEN
Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, ß, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1ß, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons.SIGNIFICANCE STATEMENT Tau pathology is closely associated with neurodegeneration in Alzheimer's disease and other tauopathies, but the toxic mechanisms remain a debated topic. We previously proposed that pathologic tau forms induce dysfunction and degeneration through aberrant activation of a PP1-dependent pathway that disrupts axonal transport. Here, we show that tau directly interacts with specific PP1 isoforms, increasing levels of active PP1. Pathogenic tau mutations enhance this interaction, further increasing active PP1 levels and impairing axonal transport in isolated squid axoplasm and primary hippocampal neurons. Mutant-tau-mediated impairment of axonal transport was mediated by PP1γ and a phosphatase-activating domain located at the amino terminus of tau. This work has important implications for understanding and potentially mitigating tau-mediated neurotoxicity in tauopathies.
Asunto(s)
Transporte Axonal/efectos de los fármacos , Demencia Frontotemporal , Neuronas/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas tau/farmacología , Animales , Células Cultivadas , Decapodiformes , Femenino , Hipocampo , Humanos , Masculino , Mutación , Neuronas/efectos de los fármacos , Ratas , Proteínas tau/genéticaRESUMEN
Prevalent in approximately 20% of the worldwide human population, the rs6265 (also called 'Val66Met') single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor (BDNF) is a common genetic variant that can alter therapeutic responses in individuals with Parkinson's disease (PD). Possession of the variant Met allele results in decreased activity-dependent release of BDNF. Given the resurgent worldwide interest in neural transplantation for PD and the biological relevance of BDNF, the current studies examined the effects of the rs6265 SNP on therapeutic efficacy and side-effect development following primary dopamine (DA) neuron transplantation. Considering the significant reduction in BDNF release associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF signaling contributes to the limited clinical benefit observed in a subpopulation of PD patients despite robust survival of grafted DA neurons, and further, that this mutation contributes to the development of aberrant graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat model of the rs6265 BDNF SNP to examine for the first time the influence of a common genetic polymorphism on graft survival, functional efficacy, and side-effect liability, comparing these parameters between wild-type (Val/Val) rats and those homozygous for the variant Met allele (Met/Met). Counter to our hypothesis, the current research indicates that Met/Met rats show enhanced graft-associated therapeutic efficacy and a paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type rats. However, consistent with our hypothesis, we demonstrate that the rs6265 genotype in the host rat is strongly linked to development of GID, and that this behavioral phenotype is significantly correlated with neurochemical signatures of atypical glutamatergic neurotransmission by grafted DA neurons.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Trasplante de Células/métodos , Neuronas Dopaminérgicas/trasplante , Discinesias/genética , Animales , Antiparkinsonianos/efectos adversos , Trasplante de Células/efectos adversos , Neuronas Dopaminérgicas/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesias/etiología , Embrión de Mamíferos , Técnicas de Sustitución del Gen , Levodopa/efectos adversos , Mesencéfalo/citología , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Simpaticolíticos/toxicidad , Proteína 2 de Transporte Vesicular de Glutamato/metabolismoRESUMEN
Tau is a microtubule-associated protein that is involved in both normal and pathological processes in neurons. Since the discovery and characterization of tau over 40 years ago, our understanding of tau's normal functions and toxic roles in neurodegenerative tauopathies has continued to expand. Fast axonal transport is a critical process for maintaining axons and functioning synapses, critical subcellular compartments underlying neuronal connectivity. Signs of fast axonal transport disruption are pervasive in Alzheimer's disease and other tauopathies and various mechanisms have been proposed for regulation of fast axonal transport by tau. Post-translational modifications of tau including phosphorylation at specific sites, FTDP-17 point mutations, and oligomerization, confer upon tau a toxic effect on fast axonal transport. Consistent with the well-established dependence of axons on fast axonal transport, these disease-related modifications are closely associated temporally and spatially with axonal degeneration in the early disease stages. These factors position tau as a potentially critical factor mediating the disruption of fast axonal transport that precedes synaptic dysfunction and axonal degeneration at later disease stages. In this chapter, we review the evidence that tau affects fast axonal transport and examine several potential mechanisms proposed to underlie this toxicity.
Asunto(s)
Transporte Axonal , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Fosforilación , Proteínas tau/químicaRESUMEN
Bidirectional transport of cargos along the axon is critical for maintaining functional synapses, neural connectivity, and healthy neurons. Axonal transport is disrupted in multiple neurodegenerative diseases, and projection neurons are particularly vulnerable because of the need to transport cellular materials over long distances and sustain substantial axonal mass. Pathological modifications of several disease-related proteins negatively affect transport, including tau, amyloid-ß, α-synuclein, superoxide dismutase, and huntingtin, providing a potential common mechanism by which pathological proteins exert toxicity in disease. Methods to study these toxic mechanisms are necessary to understand neurodegenerative disorders and identify potential therapeutic interventions. Here, cultured primary rodent hippocampal neurons are co-transfected with multiple plasmids to study the effects of pathological proteins on fast axonal transport using live-cell confocal imaging of fluorescently-tagged cargo proteins. We begin with the harvest, dissociation, and culturing of primary hippocampal neurons from rodents. Then, we co-transfect the neurons with plasmid DNA constructs to express fluorescent-tagged cargo protein and wild-type or mutant tau (used as an exemplar of pathological proteins). Axons are identified in live cells using an antibody that binds an extracellular domain of neurofascin, an axon initial segment protein, and an axonal region of interest is imaged to measure fluorescent cargo transport. Using KymoAnalyzer, a freely available ImageJ macro, we extensively characterize the velocity, pause frequency, and directional cargo density of axonal transport, all of which may be affected by the presence of pathological proteins. Through this method, we identify a phenotype of increased cargo pause frequency associated with the expression of pathological tau protein. Additionally, gene-silencing shRNA constructs can be added to the transfection mix to test the role of other proteins in mediating transport disruption. This protocol is easily adaptable for use with other neurodegenerative disease-related proteins and is a reproducible method to study the mechanisms of how those proteins disrupt axonal transport.
Asunto(s)
Transporte Axonal , Enfermedades Neurodegenerativas , Humanos , Neuronas , Axones , InterneuronasRESUMEN
Over four decades ago, in vitro experiments showed that tau protein interacts with and stabilizes microtubules in a phosphorylation-dependent manner. This observation fueled the widespread hypotheses that these properties extend to living neurons and that reduced stability of microtubules represents a major disease-driving event induced by pathological forms of tau in Alzheimer's disease and other tauopathies. Accordingly, most research efforts to date have addressed this protein as a substrate, focusing on evaluating how specific mutations, phosphorylation, and other post-translational modifications impact its microtubule-binding and stabilizing properties. In contrast, fewer efforts were made to illuminate potential mechanisms linking physiological and disease-related forms of tau to the normal and pathological regulation of kinases and phosphatases. Here, we discuss published work indicating that, through interactions with various kinases and phosphatases, tau may normally act as a scaffolding protein to regulate phosphorylation-based signaling pathways. Expanding on this concept, we also review experimental evidence linking disease-related tau species to the misregulation of these pathways. Collectively, the available evidence supports the participation of tau in multiple cellular processes sustaining neuronal and glial function through various mechanisms involving the scaffolding and regulation of selected kinases and phosphatases at discrete subcellular compartments. The notion that the repertoire of tau functions includes a role as a signaling hub should widen our interpretation of experimental results and increase our understanding of tau biology in normal and disease conditions.