Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Environ Manage ; 341: 118055, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141725

RESUMEN

Second-generation bioenergy, a carbon neutral or negative renewable resource, is crucial to achieving India's net-zero emission targets. Crop residues are being targeted as a bioenergy resource as they are otherwise burned on-field, leading to significant pollutant emissions. But estimating their bioenergy potential is problematic because of broad assumptions about their surplus fractions. Here, we use comprehensive surveys and multivariate regression models to estimate the bioenergy potential of surplus crop residues in India. These are with high sub-national and crop disaggregation that can facilitate the development of efficient supply chain mechanisms for its widespread usage. The estimated potential for 2019 of 1313 PJ can increase the present bioenergy installed capacity by 82% but is likely insufficient alone to meet India's bioenergy targets. The shortage of crop residue for bioenergy, combined with the sustainability concerns raised by previous studies, imply a need to reassess the strategy for the use of this resource.


Asunto(s)
Agricultura , Contaminantes Ambientales , India , Carbono
2.
Environ Res ; 212(Pt D): 113546, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660403

RESUMEN

A year-long (March 2019-February 2020) study on the characterization of fine mode carbonaceous aerosols has been conducted over a high altitude urban atmosphere, Darjeeling (27.01°N, 88.15°E, 2200 m asl) in eastern Himalaya. The fine mode aerosol (PM2.5; 41.7 ± 23.7 µgm-3), total carbonaceous aerosols (TCA; 19.8 ± 7.7 µgm-3), organic carbon (OC; 8.0 ± 3.9 µgm-3) and elemental carbon (EC; 2.0 ± 0.9 µgm-3) exhibited similar seasonal variability with the highest abundance during winter followed by premonsoon, postmonsoon and minimum in monsoon. The OC:EC varied over a range of 2.8-19.4 whereas the secondary organic carbon ranged between 1.9 and 17.1 µgm-3 respectively. Higher PM2.5 associated with higher winds and elevated mixing layer depth suggest a strong influence of regional and long-range transport. In addition to the usual morning and evening rush-hour peaks, the impact of low land plain regions driven by up-slope valley winds was observed for the carbonaceous components. A novel approach has been taken to find out the individual contributions from the local and transported fossil fuel, biomass burning, and biogenic sources to OC and EC during premonsoon. We observed that the local fossil fuel (43%) contributions dominated over the biomass burning (39%) for EC whereas the contributions of local biomass burning and the local fossil fuel were same (46%) for OC. EC exhibited a higher contribution (18%) from the regional/long-range transport compared to OC (8%). IGP and Nepal were found to be the maximum contributing long distant source regions for the carbonaceous aerosol loading over eastern Himalaya. Such individual source apportionment of carbonaceous aerosols over eastern Himalaya makes the study unique and first-ever of its kind and immensely helpful for building robust mitigation action plans.


Asunto(s)
Contaminantes Atmosféricos , Combustibles Fósiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
3.
Atmos Environ (1994) ; 244: 117947, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32982563

RESUMEN

The present study has been conducted to investigate the relative changes of carbonaceous aerosols (CA) over a high altitude Himalayan atmosphere with and without (very low) anthropogenic emissions. Measurements of atmospheric organic (OC) and elemental carbon (EC) were conducted during the lockdown period (April 2020) due to global COVID 19 outbreak and compared with the normal period (April 2019). The interesting, unexpected and surprising observation is that OC, EC and the total CA (TCA) during the lockdown (OC: 12.1 ± 5.5 µg m-3; EC: 2.2 ± 1.1 µg m-3; TCA: 21.5 ± 10 µg m-3) were higher than the normal period (OC: 7.04 ± 2.2 µg m-3; EC: 1.9 ± 0.7 µg m-3; TCA: 13.2 ± 4.1 µg m-3). The higher values for OC/EC ratio too was observed during the lockdown (5.7 ± 0.9) compared to the normal period (4.2 ± 1.1). Much higher surface O3 during the lockdown (due to very low NO) could better promote the formation of secondary OC (SOC) through the photochemical oxidation of biogenic volatile organic compounds (BVOCs) emitted from Himalayan coniferous forest cover. SOC during the lockdown (7.6 ± 3.5 µg m-3) was double of that in normal period (3.8 ± 1.4 µg m-3). Regression analysis between SOC and O3 showed that with the same amount of increase in O3, the SOC formation increased to a larger extent when anthropogenic emissions were very low and biogenic emissions dominate (lockdown) compared to when anthropogenic emissions were high (normal). Concentration weighted trajectory (CWT) analysis showed that the anthropogenic activities over Nepal and forest fire over north-east India were the major long-distant sources of the CA over Darjeeling during the normal period. On the other hand, during lockdown, the major source regions of CA over Darjeeling were regional/local. The findings of the study indicate the immense importance of Himalayan biosphere as a major source of organic carbon.

4.
Sci Total Environ ; 898: 165415, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37459996

RESUMEN

A year-long study (January-December 2019) on the chemical characterization and meteorological impact on PM2.5 was conducted over a semi-urban station, Shyamnagar, in the easternmost part of the Indo-Gangetic Plains (IGP). PM2.5 concentrations (Mean = 81.69 ± 66.27 µgm-3; 7.10-272.74 µgm-3), the total carbonaceous aerosols (TCA) (Mean = 22.85 ± 24.95 µgm-3; 0.77-102.97 µgm-3) along with differential carbonaceous components like organic carbon (OC) (Mean = 11.28 ± 12.48 µgm-3; 0.48-53.01 µgm-3) and elemental carbon (EC) (Mean = 4.83 ± 5.28 µgm-3; 0.1-22.13 µgm-3) exhibited prominent seasonal variability with the highest concentrations during winter, followed by post-monsoon, pre-monsoon and lowest during monsoon. A similar seasonal variation was observed for the total water-soluble ionic species (Mean = 31.91 ± 20.12 µgm-3; 0.1-126.73 µgm-3). We observed that under the least favorable conditions (low ventilation coefficient), high PM2.5 pollution (exceeding Indian standard) was associated with a high increase in secondary components of PM2.5. Eastern, central and western parts of IGP, as well as Nepal, were the major long-distant source regions whereas the northern part of West Bengal and parts of Bangladesh were the major regional source region for high PM2.5 pollution over Shyamnagar. The ratios like char-EC/soot-EC, non-sea-K+/EC and non-sea-SO42-/EC strongly indicated the dominance of fossil fuel burning over biomass burning. Compared with other studies, we observed that the PM2.5 pollution over this semi-urban region was comparable (and even higher in some cases) with other parts of IGP. The high exceedance of PM2.5 over the Indian standard in Shyamnagar strongly demands an immediate initiation of systematic and regular based air pollution monitoring over semi-urban/non-urban regions in India, especially IGP, in addition to the polluted cities.

5.
Chemosphere ; 326: 138422, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36925018

RESUMEN

This study reports the chemical characterization of the carbonaceous component of PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm) collected over a year-long campaign from a regional site in Shyamnagar, West Bengal, in the Indo-Gangetic Plains (IGP), India. The carbonaceous fractions (elemental and organic carbon), mass concentrations, and stable carbon isotopic composition (δ13C value) of aerosols were measured and utilized to characterize the sources and understand the atmospheric processing of aerosols. Cluster analysis, Potential Source Contribution Function (PSCF) modeling, and fire count data were analyzed to decipher the pattern of air masses, source contributions, and extent of burning activities. The PM2.5 mass concentrations were significantly higher during winter (168.3 ± 56.3 µg m-3) and post-monsoon (109.8 ± 59.1 µg m-3) compared to the monsoon (29.8 ± 10.7 µg m-3) and pre-monsoon (55.1 ± 23.0 µg m-3). Organic carbon (OC), elemental carbon (EC), and total carbon (TC) concentrations were also several factors higher during winter and post-monsoon compared to monsoon and pre-monsoon. The winter and post-monsoon experienced the impact of air masses from upwind IGP. On the other hand, long-range transported air masses from the South-West direction dominated during monsoon and pre-monsoon, which are also relatively cleaner periods. The average δ13C during post-monsoon and winter was ∼1‰ higher compared to monsoon and pre-monsoon. The vehicular exhaust and biomass/biofuel burning contributed dominantly in winter and post-monsoon. In comparison, lower δ13C in pre-monsoon and monsoon might be attributed to the dominance of biomass/biofuel combustion. Photochemical-induced aging of the anthropogenic aerosols resulted in a higher δ13C of TC in winter and post-monsoon, whereas the mixing of different local sources in pre-monsoon and monsoon resulted in lower δ13C values. These findings benefit policymakers in strategizing proper and effective management of biomass/biofuel burning in the IGP to minimize air pollution.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Carbono/análisis , Contaminantes Atmosféricos/análisis , Biocombustibles/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Estaciones del Año , Aerosoles/análisis , India
6.
Environ Sci Pollut Res Int ; 28(37): 51642-51656, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33990919

RESUMEN

The study represents the seasonal characteristics (carbonaceous aerosols and elements) and the contribution of prominent sources of PM2.5 and PM10 in the high altitude of the eastern Himalaya (Darjeeling) during August 2018-July 2019. Carbonaceous aerosols [organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC)] and elements (Al, Fe, Ti, Cu, Zn, Mn, Cr, Ni, Mo, Cl, P, S, K, Zr, Pb, Na, Mg, Ca, and B) in PM2.5 and PM10 were analyzed to estimate their possible sources. The annual concentrations of PM2.5 and PM10 were computed as 37±12 µg m-3 and 58±18 µg m-3, respectively. In the present case, total carbonaceous species in PM2.5 and PM10 were accounted for 20.6% of PM2.5 and 18.6% of PM10, respectively, whereas trace elements in PM2.5 and PM10 were estimated to be 15% of PM2.5 and 12% of PM10, respectively. Monthly and seasonal variations in mass concentrations of carbonaceous aerosols and elements in PM2.5 and PM10 were also observed during the observational period. In PM2.5, the annual concentrations of POC and SOC were 2.35 ± 1.06 µg m-3 (66% of OC) and 1.19±0.57 µg m-3 (34% of OC), respectively, whereas annual average POC and SOC concentrations in PM10 were 3.18 ± 1.13 µg m-3 (63% of OC) and 2.05±0.98 µg m-3 (37% of OC), respectively. The seasonal contribution of POC and SOC were ranging from 55 to 77% and 33 to 45% of OC in PM2.5, respectively, whereas in PM10, the seasonal contributions of POC and SOC were ranging from 51 to 73% and 37 to 49% of OC, respectively. The positive relationship between OC & EC and OC & WSOC of PM2.5 and PM10 during all the seasons (except monsoon in case of PM10) indicates their common sources. The enrichment factors (EFs) and significant positive correlation of Al with othe crustal elements (Fe, Ca, Mg, and Ti) of fine and coarse mode aerosols indicate the influence of mineral dust at Darjeeling. Principal component analysis (PCA) resolved the four common sources (biomass burning + fossil fuel combustion (BB + FFC), crustal/soil dust, vehicular emissions (VE), and industrial emissions (IE)) of PM2.5 and PM10 in Darjeeling.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda