RESUMEN
BACKGROUND: Many people suffer from insomnia, a sleep disorder characterized by difficulty falling and staying asleep during the night. As social media have become a ubiquitous platform to share users' thoughts, opinions, activities, and preferences with their friends and acquaintances, the shared content across these platforms can be used to diagnose different health problems, including insomnia. Only a few recent studies have examined the prediction of insomnia from Twitter data, and we found research gaps in predicting insomnia from word usage patterns and correlations between users' insomnia and their Big 5 personality traits as derived from social media interactions. OBJECTIVE: The purpose of this study is to build an insomnia prediction model from users' psycholinguistic patterns, including the elements of word usage, semantics, and their Big 5 personality traits as derived from tweets. METHODS: In this paper, we exploited both psycholinguistic and personality traits derived from tweets to identify insomnia patients. First, we built psycholinguistic profiles of the users from their word choices and the semantic relationships between the words of their tweets. We then determined the relationship between a users' personality traits and insomnia. Finally, we built a double-weighted ensemble classification model to predict insomnia from both psycholinguistic and personality traits as derived from user tweets. RESULTS: Our classification model showed strong prediction potential (78.8%) to predict insomnia from tweets. As insomniacs are generally ill-tempered and feel more stress and mental exhaustion, we observed significant correlations of certain word usage patterns among them. They tend to use negative words (eg, "no," "not," "never"). Some people frequently use swear words (eg, "damn," "piss," "fuck") with strong temperament. They also use anxious (eg, "worried," "fearful," "nervous") and sad (eg, "crying," "grief," "sad") words in their tweets. We also found that the users with high neuroticism and conscientiousness scores for the Big 5 personality traits likely have strong correlations with insomnia. Additionally, we observed that users with high conscientiousness scores have strong correlations with insomnia patterns, while negative correlation between extraversion and insomnia was also found. CONCLUSIONS: Our model can help predict insomnia from users' social media interactions. Thus, incorporating our model into a software system can help family members detect insomnia problems in individuals before they become worse. The software system can also help doctors to diagnose possible insomnia in patients.
Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Medios de Comunicación Sociales , Humanos , Psicolingüística , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico , Trastornos del Inicio y del Mantenimiento del Sueño/etiologíaRESUMEN
Objective: Early diagnosis of breast cancer can lead to effective treatment, possibly increase long-term survival rates, and improve quality of life. The objective of this study is to present an automated analysis and classification system for breast cancer using clinical markers such as tumor shape, orientation, margin, and surrounding tissue. The novelty and uniqueness of the study lie in the approach of considering medical features based on the diagnosis of radiologists. Methods: Using clinical markers, a graph is generated where each feature is represented by a node, and the connection between them is represented by an edge which is derived through Pearson's correlation method. A graph convolutional network (GCN) model is proposed to classify breast tumors into benign and malignant, using the graph data. Several statistical tests are performed to assess the importance of the proposed features. The performance of the proposed GCN model is improved by experimenting with different layer configurations and hyper-parameter settings. Results: Results show that the proposed model has a 98.73% test accuracy. The performance of the model is compared with a graph attention network, a one-dimensional convolutional neural network, and five transfer learning models, ten machine learning models, and three ensemble learning models. The performance of the model was further assessed with three supplementary breast cancer ultrasound image datasets, where the accuracies are 91.03%, 94.37%, and 89.62% for Dataset A, Dataset B, and Dataset C (combining Dataset A and Dataset B) respectively. Overfitting issues are assessed through k-fold cross-validation. Conclusion: Several variants are utilized to present a more rigorous and fair evaluation of our work, especially the importance of extracting clinically relevant features. Moreover, a GCN model using graph data can be a promising solution for an automated feature-based breast image classification system.
RESUMEN
Knee Osteoarthritis (KOA) is a leading cause of disability and physical inactivity. It is a degenerative joint disease that affects the cartilage, cushions the bones, and protects them from rubbing against each other during motion. If not treated early, it may lead to knee replacement. In this regard, early diagnosis of KOA is necessary for better treatment. Nevertheless, manual KOA detection is time-consuming and error-prone for large data hubs. In contrast, an automated detection system aids the specialist in diagnosing KOA grades accurately and quickly. So, the main objective of this study is to create an automated decision system that can analyze KOA and classify the severity grades, utilizing the extracted features from segmented X-ray images. In this study, two different datasets were collected from the Mendeley and Kaggle database and combined to generate a large data hub containing five classes: Grade 0 (Healthy), Grade 1 (Doubtful), Grade 2 (Minimal), Grade 3 (Moderate), and Grade 4 (Severe). Several image processing techniques were employed to segment the region of interest (ROI). These included Gradient-weighted Class Activation Mapping (Grad-Cam) to detect the ROI, cropping the ROI portion, applying histogram equalization (HE) to improve contrast, brightness, and image quality, and noise reduction (using Otsu thresholding, inverting the image, and morphological closing). Besides, the focus filtering method was utilized to eliminate unwanted images. Then, six feature sets (morphological, GLCM, statistical, texture, LBP, and proposed features) were generated from segmented ROIs. After evaluating the statistical significance of the features and selection methods, the optimal feature set (prominent six distance features) was selected, and five machine learning (ML) models were employed. Additionally, a decision-making strategy based on the six optimal features is proposed. The XGB model outperformed other models with a 99.46 % accuracy, using six distance features, and the proposed decision-making strategy was validated by testing 30 images.
RESUMEN
COVID-19, pneumonia, and tuberculosis have had a significant effect on recent global health. Since 2019, COVID-19 has been a major factor underlying the increase in respiratory-related terminal illness. Early-stage interpretation and identification of these diseases from X-ray images is essential to aid medical specialists in diagnosis. In this study, (COV-X-net19) a convolutional neural network model is developed and customized with a soft attention mechanism to classify lung diseases into four classes: normal, COVID-19, pneumonia, and tuberculosis using chest X-ray images. Image preprocessing is carried out by adjusting optimal parameters to preprocess the images before undertaking training of the classification models. Moreover, the proposed model is optimized by experimenting with different architectural structures and hyperparameters to further boost performance. The performance of the proposed model is compared with eight state-of-the-art transfer learning models for a comparative evaluation. Results suggest that the COV-X-net19 outperforms other models with a testing accuracy of 95.19%, precision of 96.49% and F1-score of 95.13%. Another novel approach of this study is to find out the probable reason behind image misclassification by analyzing the handcrafted imaging features with statistical evaluation. A statistical analysis known as analysis of variance test is performed, to identify at which point the model can identify a class accurately, and at which point the model cannot identify the class. The potential features responsible for the misclassification are also found. Moreover, Random Forest Feature importance technique and Minimum Redundancy Maximum Relevance technique are also explored. The methods and findings of this study can benefit in the clinical perspective in early detection and enable a better understanding of the cause of misclassification.
RESUMEN
Social media have become an indispensable part of peoples' daily lives. Research suggests that interactions on social media partly exhibit individuals' personality, sentiment, and behavior. In this study, we examine the association between students' mental health and psychological attributes derived from social media interactions and academic performance. We build a classification model where students' psychological attributes and mental health issues will be predicted from their social media interactions. Then, students' academic performance will be identified from their predicted psychological attributes and mental health issues in the previous level. Firstly, we select samples by using judgmental sampling technique and collect the textual content from students' Facebook news feeds. Then, we derive feature vectors using MPNet (Masked and Permuted Pre-training for Language Understanding), which is one of the latest pre-trained sentence transformer models. Secondly, we find two different levels of correlations: (i) users' social media usage and their psychological attributes and mental health status and (ii) users' psychological attributes and mental health status and their academic performance. Thirdly, we build a two-level hybrid model to predict academic performance (i.e., Grade Point Average (GPA)) from students' Facebook posts: (1) from Facebook posts to mental health and psychological attributes using a regression model (SM-MP model) and (2) from psychological and mental attributes to the academic performance using a classifier model (MP-AP model). Later, we conduct an evaluation study by using real-life samples to validate the performance of the model and compare the performance with Baseline Models (i.e., Linguistic Inquiry and Word Count (LIWC) and Empath). Our model shows a strong performance with a microaverage f-score of 0.94 and an AUC-ROC score of 0.95. Finally, we build an ensemble model by combining both the psychological attributes and the mental health models and find that our combined model outperforms the independent models.