Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33906946

RESUMEN

Intracarotid arterial hyperosmolar mannitol (ICAHM) blood-brain barrier disruption (BBBD) is effective and safe for delivery of therapeutics for central nervous system malignancies. ICAHM osmotically alters endothelial cells and tight junction integrity to achieve BBBD. However, occurrence of neuroinflammation following hemispheric BBBD by ICAHM remains unknown. Temporal proteomic changes in rat brains following ICAHM included increased damage-associated molecular patterns, cytokines, chemokines, trophic factors, and cell adhesion molecules, indicative of a sterile inflammatory response (SIR). Proteomic changes occurred within 5 min of ICAHM infusion and returned to baseline by 96 h. Transcriptomic analyses following ICAHM BBBD further supported an SIR. Immunohistochemistry revealed activated astrocytes, microglia, and macrophages. Moreover, proinflammatory proteins were elevated in serum, and proteomic and histological findings from the contralateral hemisphere demonstrated a less pronounced SIR, suggesting neuroinflammation beyond regions of ICAHM infusion. Collectively, these results demonstrate ICAHM induces a transient SIR that could potentially be harnessed for neuroimmunomodulation.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Inmunidad Innata/genética , Inflamación/genética , Manitol/farmacología , Animales , Barrera Hematoencefálica/metabolismo , Arterias Carótidas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/sangre , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/genética , Quimiocinas/sangre , Citocinas/sangre , Células Endoteliales/efectos de los fármacos , Humanos , Inflamación/sangre , Ratas , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/genética
2.
J Magn Reson Imaging ; 48(2): 441-448, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29314418

RESUMEN

BACKGROUND: Cerebral blood volume (CBV) mapping with a dynamic susceptibility contrast (DSC) perfusion technique has become a clinical tool in diagnosing and follow-up of brain tumors. Ferumoxytol, a long-circulating iron oxide nanoparticle, has been tested for CBV mapping, but the optimal dose has not been established. PURPOSE: To compare ferumoxytol DSC of two different doses to standard of care gadoteridol by analyzing time-intensity curves and CBV maps in normal-appearing brain regions. STUDY TYPE: Retrospective. SUBJECTS: Fifty-four patients with various brain disorders. FIELD STRENGTH/SEQUENCE: 3T MRI. DSC-MRI was performed with 0.1 mmol/kg gadoteridol and 1 day later with ferumoxytol in doses of 1 or 2 mg/kg. ASSESSMENT: Signal changes during first pass, relative CBV (rCBV) in normal-appearing thalamus, putamen, and globus pallidus, and contrast-to-noise ratio (CNR) of the CBV maps were compared between gadoteridol and various doses of ferumoxytol using an automated method. To subjectively assess the quality of the CBV maps, two blinded readers also assessed visual conspicuity of the putamen. STATISTICAL TESTS: Linear mixed effect model was used for statistical comparison. RESULTS: Compared to gadoteridol, 1 mg/kg ferumoxytol showed no difference in CNR (P = 0.6505), peak ΔR2*, and rCBV in the putamen (P = 0.2669, 0.0871) or in the thalamus (P = 0.517, 0.9787); 2 mg/kg ferumoxytol increased peak ΔR2* as well as the CNR (P < 0.0001), but also mildly increased rCBV in putamen and globus pallidus (P = 0.0005, 0.0012). Signal intensities during first pass remained highly above the noise level, with overlapping of 95% confidence intervals with noise only in 3 out of 162 tested regions. Compared to gadoteridol, the visual image quality showed mild improvement with 1 mg/kg (P = 0.02) and marked improvement with 2 mg/kg ferumoxytol (P < 0.0001). DATA CONCLUSION: 1 mg/kg ferumoxytol provides similar imaging results to standard gadoteridol for DSC-MRI, and 2 mg/kg has a benefit of increased CNR, but may also result in mildly increased rCBV values. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:441-448.


Asunto(s)
Circulación Cerebrovascular , Compuestos Férricos/química , Óxido Ferrosoférrico/química , Compuestos Heterocíclicos/química , Imagen por Resonancia Magnética , Compuestos Organometálicos/química , Adulto , Anciano , Mapeo Encefálico , Medios de Contraste , Femenino , Gadolinio/química , Humanos , Masculino , Nanopartículas del Metal , Persona de Mediana Edad , Perfusión , Estudios Retrospectivos
3.
Kidney Int ; 92(1): 47-66, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28434822

RESUMEN

Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material.


Asunto(s)
Medios de Contraste/administración & dosificación , Óxido Ferrosoférrico/administración & dosificación , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Animales , Atlas como Asunto , Preescolar , Medios de Contraste/efectos adversos , Medios de Contraste/farmacocinética , Femenino , Óxido Ferrosoférrico/efectos adversos , Óxido Ferrosoférrico/farmacocinética , Hematínicos/administración & dosificación , Humanos , Riñón/fisiopatología , Imagen por Resonancia Magnética/efectos adversos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Eliminación Renal , Insuficiencia Renal Crónica/fisiopatología , Reproducibilidad de los Resultados
4.
J Neurooncol ; 126(3): 447-54, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26694547

RESUMEN

We tested the hypothesis that intra-arterial (IA) infusion of temozolomide into the internal carotid artery would safely improve drug delivery to brain and enhance chemotherapy efficacy in a chemosensitive rat brain tumor model. Quantitative autoradiography after 25 µCi (14)C-temozolomide was given by oral, intravenous, or IA route of administration, or IA with osmotic blood-brain barrier disruption (BBBD) (n = 5-7 per group) showed that both IA and IA/BBBD administration increased drug delivery in tumor by over threefold compared to normal brain (P < 0.02), and also significantly elevated delivery throughout the infused right hemisphere. Temozolomide (20 mg/kg; ~150 mg/m(2)) increased median survival when given by oral (25.5 days), intravenous (25.5 days), or IA (33 days) route of administration, compared to 17.5 days in untreated controls (n = 8 per group; overall P < 0.0001). Survival time after IA temozolomide was significantly longer than all other groups (P < 0.01 for all comparisons). BBBD temozolomide was toxic in the efficacy study, but there was no evidence of symptomatic neurotoxicity in rats given IA temozolomide. After these promising animal results, a 49 year old male with glioblastoma multiforme who failed all standard therapy received temozolomide 100 mg/m(2) IA. Upon initiation of the second course of IA infusion the patient had increased heart rate, blood pressure, and rash, and the procedure was terminated without sequelae. Follow up IA infusion of temozolomide diluent in normal rats showed damaged cerebrovasculature as determined by dye leakage. These results demonstrate that IA infusion of temozolomide was toxic, with or without BBBD. We conclude that under the current formulation temozolomide is not safe for IA infusion in patients.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Antineoplásicos Alquilantes/administración & dosificación , Antineoplásicos Alquilantes/efectos adversos , Neoplasias Encefálicas/secundario , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Humanos , Inyecciones Intraarteriales , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Síndromes de Neurotoxicidad/patología , Ratas , Ratas Desnudas , Carcinoma Pulmonar de Células Pequeñas/patología , Temozolomida , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nanomedicine ; 12(6): 1535-42, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27071335

RESUMEN

Ferumoxytol ultrasmall superparamagnetic iron oxide nanoparticles can enhance contrast between neuroinflamed and normal-appearing brain tissue when used as a contrast agent for high-sensitivity magnetic resonance imaging (MRI). Here we used an anti-dextran antibody (Dx1) that binds the nanoparticle's carboxymethyldextran coating to differentiate ferumoxytol from endogenous iron and localize it unequivocally in brain tissue. Intravenous injection of ferumoxytol into immune-competent rats that harbored human tumor xenograft-induced inflammatory brain lesions resulted in heterogeneous and lesion-specific signal enhancement on MRI scans in vivo. We used Dx1 immunolocalization and electron microscopy to identify ferumoxytol in affected tissue post-MRI. We found that ferumoxytol nanoparticles were taken up by astrocyte endfeet surrounding cerebral vessels, astrocyte processes, and CD163(+)/CD68(+) macrophages, but not by tumor cells. These results provide a biological basis for the delayed imaging changes seen with ferumoxytol and indicate that ferumoxytol-MRI can be used to assess the inflammatory component of brain lesions in the clinic.


Asunto(s)
Encéfalo/patología , Óxido Ferrosoférrico/farmacocinética , Imagen por Resonancia Magnética , Nanopartículas , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste , Humanos , Ratas
6.
J Neurooncol ; 121(3): 433-40, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25411097

RESUMEN

Decreasing oxidative damage with the antioxidant agent N-acetylcysteine (NAC) can block the side effects of chemotherapy, but may diminish anti-tumor efficacy. We tested the potential for interactions of high dose NAC against a minimally effective cisplatin chemotherapy regimen in rat models of human pediatric cancers. Athymic rats received subcutaneous implantation of human SK-N-AS neuroblastoma cells or intra-cerebellar implantation of human D283-MED medulloblastoma cells. Rats were untreated or treated with cisplatin (3 or 4 mg/kg IV) with or without NAC (1,000 mg/kg IV) 30 min before or 4 h after cisplatin treatment. Blood urea nitrogen (BUN) and tumor volumes were measured. Cisplatin decreased the growth of SK-N-AS neuroblastoma subcutaneous tumors from 17.7 ± 4.9 to 6.4 ± 2.5 fold over baseline 2 weeks after treatment (P < 0.001). Pretreatment with NAC decreased cisplatin efficacy, while 4 h delayed NAC did not significantly affect cisplatin anti-tumor effects (relative tumor volume 6.8 ± 2.0 fold baseline, P < 0.001). In D283-MED medulloblastoma brain tumors, cisplatin decreased final tumor volume to 3.9 ± 2.3 mm(3) compared to untreated tumor volume of 45.9 ± 38.7 (P = 0.008). Delayed NAC did not significantly alter cisplatin efficacy (tumor volume 6.8 ± 8.1 mm(3), P = 0.014 versus control). Cisplatin was minimally nephrotoxic in these models. NAC decreased cisplatin-induced elevations in BUN (P < 0.02). NAC chemoprotection did not alter cisplatin therapy, if delayed until 4 h after chemotherapy. These data support a Phase I/II clinical trial of delayed NAC to reduce ototoxicity in children with localized pediatric cancers.


Asunto(s)
Acetilcisteína/administración & dosificación , Antineoplásicos/toxicidad , Antioxidantes/administración & dosificación , Cisplatino/toxicidad , Neoplasias Experimentales/tratamiento farmacológico , Animales , Neoplasias Encefálicas/patología , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Meduloblastoma/patología , Trasplante de Neoplasias , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Desnudas
7.
Neuroradiol J ; : 19714009241242596, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38544404

RESUMEN

PURPOSE: To compare DSC-MRI using Gadolinium (GBCA) and Ferumoxytol (FBCA) in high-grade glioma at 3T and 7T MRI field strengths. We hypothesized that using FBCA at 7T would enhance the performance of DSC, as measured by contrast-to-noise ratio (CNR). METHODS: Ten patients (13 lesions) were assigned to 3T (6 patients, 6 lesions) or 7T (4 patients, 7 lesions). All lesions received 0.1 mmol/kg of GBCA on day 1. Ten lesions (4 at 3T and 6 at 7T) received a lower dose (0.6 mg/kg) of FBCA, followed by a higher dose (1.0-1.2 mg/kg), while 3 lesions (2 at 3T and 1 at 7T) received only a higher dose on Day 2. CBV maps with leakage correction for GBCA but not for FBCA were generated. The CNR and normalized CBV (nCBV) were analyzed on enhancing and non-enhancing high T2W lesions. RESULTS: Regardless of FBCA dose, GBCA showed higher CNR than FBCA at 7T, which was significant for high-dose FBCA (p < .05). Comparable CNR between GBCA and high-dose FBCA was observed at 3T. There was a trend toward higher CNR for FBCA at 3T than 7T. GBCA also showed nCBV twice that of FBCA at both MRI field strengths with significance at 7T. CONCLUSION: GBCA demonstrated higher image conspicuity, as measured by CNR, than FBCA on 7T. The stronger T2* weighting realized with higher magnetic field strength, combined with FBCA, likely results in more signal loss rather than enhanced performance on DSC. However, at clinical 3T, both GBCA and FBCA, particularly a dosage of 1.0-1.2 mg/kg (optimal for perfusion imaging), yielded comparable CNR.

8.
Radiology ; 266(3): 842-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23204544

RESUMEN

PURPOSE: To compare gadoteridol and ferumoxytol for measurement of relative cerebral blood volume (rCBV) in patients with glioblastoma multiforme (GBM) who showed progressive disease at conventional magnetic resonance (MR) imaging after chemo- and radiation therapy (hereafter, chemoradiotherapy) and to correlate rCBV with survival. MATERIALS AND METHODS: Informed consent was obtained from all participants before enrollment in one of four institutional review board-approved protocols. Contrast agent leakage maps and rCBV were derived from perfusion MR imaging with gadoteridol and ferumoxytol in 19 patients with apparently progressive GBM on conventional MR images after chemoradiotherapy. Patients were classified as having high rCBV (>1.75), indicating tumor, and low rCBV (≤ 1.75), indicating pseudoprogression, for each contrast agent separately, and with or without contrast agent leakage correction for imaging with gadoteridol. Statistical analysis was performed by using Kaplan-Meier survival plots with the log-rank test and Cox proportional hazards models. RESULTS: With ferumoxytol, rCBV was low in nine (47%) patients, with median overall survival (mOS) of 591 days, and high rCBV in 10 (53%) patients, with mOS of 163 days. A hazard ratio of 0.098 (P = .004) indicated significantly improved survival. With gadoteridol, rCBV was low in 14 (74%) patients, with mOS of 474 days, and high in five (26%), with mOS of 156 days and a nonsignificant hazard ratio of 0.339 (P = .093). Five patients with mismatched high rCBV with ferumoxytol and low rCBV with gadoteridol had an mOS of 171 days. When leakage correction was applied, rCBV with gadoteridol was significantly associated with survival (hazard ratio, 0.12; P = .003). CONCLUSION: Ferumoxytol as a blood pool agent facilitates differentiation between tumor progression and pseudoprogression, appears to be a good prognostic biomarker, and unlike gadoteridol, does not require contrast agent leakage correction.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Óxido Ferrosoférrico , Compuestos Heterocíclicos , Angiografía por Resonancia Magnética/métodos , Compuestos Organometálicos , Adulto , Anciano , Neoplasias Encefálicas/mortalidad , Quimioradioterapia , Medios de Contraste , Femenino , Gadolinio , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Reproducibilidad de los Resultados , Medición de Riesgo , Sensibilidad y Especificidad , Estadística como Asunto , Análisis de Supervivencia , Tasa de Supervivencia , Resultado del Tratamiento
9.
Neuroradiol J ; : 19714009231163560, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37306690

RESUMEN

RATIONALE AND OBJECTIVE: Poor clinical outcomes for patients with glioblastoma are in part due to dysfunction of the tumor-immune microenvironment. An imaging approach able to characterize immune microenvironmental signatures could provide a framework for biologically based patient stratification and response assessment. We hypothesized spatially distinct gene expression networks can be distinguished by multiparametric Magnetic Resonance Imaging (MRI) phenotypes. MATERIALS AND METHODS: Patients with newly diagnosed glioblastoma underwent image-guided tissue sampling allowing for co-registration of MRI metrics with gene expression profiles. MRI phenotypes based on gadolinium contrast enhancing lesion (CEL) and non-enhancing lesion (NCEL) regions were subdivided based on imaging parameters (relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC)). Gene set enrichment analysis and immune cell type abundance was estimated using CIBERSORT methodology. Significance thresholds were set at a p-value cutoff 0.005 and an FDR q-value cutoff of 0.1. RESULTS: Thirteen patients (eight men, five women, mean age 58 ± 11 years) provided 30 tissue samples (16 CEL and 14 NCEL). Six non-neoplastic gliosis samples differentiated astrocyte repair from tumor associated gene expression. MRI phenotypes displayed extensive transcriptional variance reflecting biological networks, including multiple immune pathways. CEL regions demonstrated higher immunologic signature expression than NCEL, while NCEL regions demonstrated stronger immune signature expression levels than gliotic non-tumor brain. Incorporation of rCBV and ADC metrics identified sample clusters with differing immune microenvironmental signatures. CONCLUSION: Taken together, our study demonstrates that MRI phenotypes provide an approach for non-invasively characterizing tumoral and immune microenvironmental glioblastoma gene expression networks.

10.
Neurooncol Adv ; 5(1): vdad148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077209

RESUMEN

Background: MRI with gadolinium (Gd)-contrast agents is used to assess glioblastoma treatment response but does not specifically reveal heterogeneous biology or immune microenvironmental composition. Ferumoxytol (Fe) contrast is an iron nanoparticle that localizes glioblastoma macrophages and microglia. Therefore, we hypothesized that the use of Fe contrast improves upon standard Gd-based T1-weighted and T2/FLAIR analysis by specifically delineating immune processes. Methods: In this, HIPAA-compliant institutional review board-approved prospective study, stereotactic biopsy samples were acquired from patients with treatment-naïve and recurrent glioblastoma based on MR imaging phenotypes; Gd and Fe T1 enhancement (Gd+, Fe+) or not (Gd-, Fe-), as well as T2-Flair hyperintensity (FLAIR+, FLAIR-). Analysis of genetic expression was performed with RNA microarrays. Imaging and genomic expression patterns were compared using false discovery rate statistics. Results: MR imaging phenotypes defined a variety of immune pathways and Hallmark gene sets. Gene set enrichment analysis demonstrated that Gd+, Fe+, and FLAIR+ features were individually correlated with the same 7 immune process gene sets. Fe+ tissue showed the greatest degree of immune Hallmark gene sets compared to Gd+ or Flair+ tissues and had statistically elevated M2 polarized macrophages, among others. Importantly, the FLAIR+ Gd+ and Fe- imaging phenotypes did not demonstrate expression of immune Hallmark gene sets. Conclusions: Our study demonstrates the potential of Fe and Gd-enhanced MRI phenotypes to reveal spatially distinct immune processes within glioblastoma. Fe improves upon the standard of care Gd enhancement by specifically localizing glioblastoma-associated inflammatory processes, providing valuable insights into tumor biology.

11.
Clin Cancer Res ; 29(13): 2410-2418, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37134194

RESUMEN

PURPOSE: Cisplatin-induced hearing loss (CIHL) is common and permanent. As compared with earlier otoprotectants, we hypothesized N-acetylcysteine (NAC) offers potential for stronger otoprotection through stimulation of glutathione (GSH) production. This study tested the optimal dose, safety, and efficacy of NAC to prevent CIHL. PATIENTS AND METHODS: In this nonrandomized, controlled phase Ia/Ib trial, children and adolescents newly diagnosed with nonmetastatic, cisplatin-treated tumors received NAC intravenously 4 hours post-cisplatin. The trial performed dose-escalation across three dose levels to establish a safe dose that exceeded the targeted peak serum NAC concentration of 1.5 mmol/L (as identified from preclinical models). Patients with metastatic disease or who were otherwise ineligible were enrolled in an observation-only/control arm. To evaluate efficacy, serial age-appropriate audiology assessments were performed. Integrated biology examined genes involved in GSH metabolism and post-NAC GSH concentrations. RESULTS: Of 52 patients enrolled, 24 received NAC and 28 were in the control arm. The maximum tolerated dose was not reached; analysis of peak NAC concentration identified 450 mg/kg as the recommended phase II dose (RP2D). Infusion-related reactions were common. No severe adverse events occurred. Compared with the control arm, NAC decreased likelihood of CIHL at the end of cisplatin therapy [OR, 0.13; 95% confidence interval (CI), 0.021-0.847; P = 0.033] and recommendations for hearing intervention at end of study (OR, 0.082; 95% CI, 0.011-0.60; P = 0.014). NAC increased GSH; GSTP1 influenced risk for CIHL and NAC otoprotection. CONCLUSIONS: NAC was safe at the RP2D, with strong evidence for efficacy to prevent CIHL, warranting further development as a next-generation otoprotectant.


Asunto(s)
Pérdida Auditiva , Neoplasias , Adolescente , Humanos , Niño , Cisplatino/efectos adversos , Acetilcisteína/uso terapéutico , Acetilcisteína/efectos adversos , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/prevención & control , Neoplasias/tratamiento farmacológico , Neoplasias/inducido químicamente , Administración Intravenosa
12.
J Neurooncol ; 110(1): 27-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22842979

RESUMEN

Brain metastases commonly occur in patients with breast, lung and melanoma systemic cancers. The anti-α(V) integrin monoclonal antibody intetumumab binds cell surface proteins important for adhesion, invasion and angiogenesis in the metastatic cascade. The objective of this study was to investigate the anti-metastatic effect of intetumumab in a hematogenous breast cancer brain metastasis model. Female nude rats received intra-carotid infusion of human brain-seeking metastatic breast cancer cells (231BR-HER2) and were randomly assigned into four groups: (1) control; (2) intetumumab mixed with cells in vitro 5 min before infusion without further treatment; (3) intetumumab intravenously 4 h before and weekly after cell infusion; (4) intetumumab intravenously weekly starting 7 days after cell infusion. Brain metastases were detected by magnetic resonance imaging (MRI) and immunohistochemistry. Comparisons were made using the Kruskal-Wallis test and Dunnett's test. Survival times were estimated using Kaplan-Meier analysis. All control rats with brain tissue available for histology (9 of 11 rats) developed multiple brain metastases (median = 14). Intetumumab treatment either in vitro prior to cell infusion or intravenous before or after cell infusion prevented metastasis formation on MRI and decreased the number of metastases on histology (median = 2, p = 0.0055), including 30 % of animals without detectable tumors at the end of the study. The overall survival was improved by intetumumab compared to controls (median 77+ vs. 52 days, p = 0.0277). Our results suggest that breast cancer patients at risk of metastases might benefit from early intetumumab treatment.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Integrina alfa5/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Invasividad Neoplásica/patología , Ratas , Ratas Desnudas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Gene Ther ; 29(5): 533-542, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33850305

RESUMEN

Overexpression of O6-methylguanine DNA methyltransferase (MGMT) contributes to resistance to chemo-radiation therapy (CRT) in brain tumors. We previously demonstrated that non-ablative radiation improved delivery of anti-MGMT morpholino oligonucleotides (AMONs) to reduce MGMT levels in subcutaneous tumor xenografts. We evaluate this approach to enhance CRT efficacy in rat brain tumor xenograft models. The impact of radiation on targeted delivery was evaluated using fluorescent oligonucleotides (f-ON). In vitro, f-ON was localized to clathrin-coated vesicles, endosomes, and lysosomes using confocal microscopy in T98G glioma cells. In vivo, fluorescence was detected in pre-radiated, but not non-radiated Long Evans (non-tumor bearing) rat brains. Cranial radiation (2 Gy) followed by AMONs (intravenous, 10.5 mg/kg) reduced MGMT expression by 50% in both orthotopic cerebellar D283 medulloblastoma and intracerebral H460 non-small cell lung carcinoma (NSCLC) xenograft models. To evaluate the efficacy, AMONs concurrent with CRT (2 Gy radiation plus oral 20 mg/kg temozolomide ×4 days) reduced tumor volumes in the medulloblastoma model (p = 0.012), and a similar trend was found in the NSCLC brain metastasis model. We provide proof of concept for the use of non-ablative radiation to guide and enhance the delivery of morpholino oligonucleotides into brain tumor xenograft models to reduce MGMT levels and improve CRT efficacy.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Xenoinjertos , Humanos , Morfolinos , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Oligonucleótidos Antisentido/farmacología , Ratas , Ratas Long-Evans , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Neurooncol Adv ; 4(1): vdac104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35892048

RESUMEN

Background: Intra-arterial administration of chemotherapy with or without osmotic blood-brain barrier disruption enhances delivery of therapeutic agents to brain tumors. The aim of this study is to evaluate the safety of these procedures. Methods: Retrospectively collected data from a prospective database of consecutive patients with primary and metastatic brain tumors who received intra-arterial chemotherapy without osmotic blood-brain barrier disruption (IA) or intra-arterial chemotherapy with osmotic blood-brain barrier disruption (IA/OBBBD) at Oregon Health and Science University (OHSU) between December 1997 and November 2018 is reported. Chemotherapy-related complications are detailed per Common Terminology Criteria for Adverse Events (CTCAE) guidelines. Procedure-related complications are grouped as major and minor. Results: 4939 procedures (1102 IA; 3837 IA/OBBBD) were performed on 436 patients with various pathologies (primary central nervous system lymphoma [26.4%], glioblastoma [18.1%], and oligodendroglioma [14.7%]). Major procedure-related complications (IA: 12, 1%; IA/OBBBD: 27, 0.7%; P = .292) occurred in 39 procedures including 3 arterial dissections requiring intervention, 21 symptomatic strokes, 3 myocardial infarctions, 6 cervical cord injuries, and 6 deaths within 3 days. Minor procedure-related complications occurred in 330 procedures (IA: 41, 3.7%; IA/OBBBD: 289, 7.5%; P = .001). Chemotherapy-related complications with a CTCAE attribution and grade higher than 3 was seen in 359 (82.3%) patients. Conclusions: We provide safety and tolerability data from the largest cohort of consecutive patients who received IA or IA/OBBBD. Our data demonstrate that IA or IA/OBBBD safely enhance drug delivery to brain tumors and brain around the tumor.

15.
Stroke ; 42(6): 1581-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21493906

RESUMEN

BACKGROUND AND PURPOSE: Central nervous system vascular malformations (VMs) result from abnormal vasculo- and/or angiogenesis. Cavernomas and arteriovenous malformations are also sites of active inflammation. The aim of this study was to determine whether MRI detection of VMs can be improved by administration of ferumoxytol iron oxide nanoparticle, which acts as a blood pool agent at early time points and an inflammatory marker when taken up by tissue macrophages. METHODS: Nineteen patients (11 men, 8 women; mean age, 47.5 years) with central nervous system VMs underwent 3-T MRI both with gadoteridol and ferumoxytol. The ferumoxytol-induced signal changes on the T1-, T2-, and susceptibility-weighted images were analyzed at 25 minutes (range, 21 to 30 minutes) and 24 hours (range, 22 to 27 hours). RESULTS: Thirty-five lesions (capillary telangiectasia, n=6; cavernoma, n=21; developmental venous anomaly, n=7; arteriovenous malformation, n=1) were seen on the pre- and postgadoteridol images. The postferumoxytol susceptibility-weighted sequences revealed 5 additional VMs (3 capillary telangiectasias, 2 cavernomas) and demonstrated further tributary veins in all patients with developmental venous anomalies. The 24-hour T1 and T2 ferumoxytol-related signal abnormalities were inconsistent among patients and within VM types. No additional area of T1 or T2 enhancement was noted with ferumoxytol compared with gadoteridol in any lesion. CONCLUSIONS: Our findings indicate that the blood pool agent ferumoxytol provides important information about the number and true extent of VMs on the susceptibility-weighted MRI. The use of ferumoxytol as a macrophage imaging agent in the visualization of inflammatory cells within and around the lesions warrants further investigation.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central/patología , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita , Adulto , Anciano , Biomarcadores , Niño , Femenino , Óxido Ferrosoférrico , Hematínicos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad
16.
Radiology ; 261(3): 796-804, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21940504

RESUMEN

PURPOSE: To evaluate the consistency of tumor blood volume measurements and antiangiogenic therapy efficacy assessments with a low-molecular-weight gadolinium-based contrast agent (GBCA, gadodiamide) versus an iron oxide nanoparticle (ferumoxytol) in the presence or absence of a loading dose of contrast agent before perfusion magnetic resonance (MR) imaging (preload method). MATERIALS AND METHODS: The protocol was approved by the institutional animal care and use committee. U87MG tumor cells were implanted intracerebrally in 13 rats. All 13 rats underwent 11.75-T MR imaging with gadodiamide (60 µL) 13 days after tumor implantation. The next day, nine rats underwent MR imaging with ferumoxytol (60 µL). Immediately after ferumoxytol imaging, six rats received bevacizumab (45 mg/kg). MR imaging was repeated 48 hours after bevacizumab treatment with gadodiamide and 72 hours after treatment with ferumoxytol. Each study included three consecutive dynamic susceptibility-weighted contrast material-enhanced (DSC) MR acquisitions, which were performed without preload, with single-dose preload, and with double-dose preload. Tumor relative cerebral blood volume (rCBV) was estimated from each DSC MR acquisition. Two-way repeated measures analysis of variance was performed to test for differences between groups with both contrast agents. RESULTS: DSC MR imaging with gadodiamide and without preload showed low rCBV (≤ 1.75) in nine of the 13 tumors; estimated rCBV increased progressively with both single- and double-dose preloads (P < .001). Conversely, rCBVs obtained with ferumoxytol were high (>1.75) and remained constant with all three acquisitions. The magnitude of rCBV decrease after bevacizumab administration was dependent on the dose of gadodiamide preload, whereas the magnitude of rCBV decrease with ferumoxytol was constant regardless of whether contrast agent preload was used. CONCLUSION: With GBCA, tumor rCBV can be underestimated without preload and becomes dose dependent with preload correction. Conversely, ferumoxytol provides consistent assessment of tumor rCBV and antiangiogenic therapy efficacy.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Circulación Cerebrovascular , Medios de Contraste , Óxido Ferrosoférrico , Gadolinio DTPA , Glioma/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Bevacizumab , Volumen Sanguíneo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Procesamiento de Imagen Asistido por Computador , Ratas , Ratas Desnudas , Trasplante Heterólogo
17.
Neoplasia ; 23(3): 348-359, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33640759

RESUMEN

High-dose acetaminophen (AAP) with delayed rescue using n-acetylcysteine (NAC), the FDA-approved antidote to AAP overdose, has demonstrated promising antitumor efficacy in early phase clinical trials. However, the mechanism of action (MOA) of AAP's anticancer effects remains elusive. Using clinically relevant AAP concentrations, we evaluated cancer stem cell (CSC) phenotype in vitro and in vivo in lung cancer and melanoma cells with diverse driver mutations. Associated mechanisms were also studied. Our results demonstrated that AAP inhibited 3D spheroid formation, self-renewal, and expression of CSC markers when human cancer cells were grown in serum-free CSC media. Similarly, anti-CSC activity was demonstrated in vivo in xenograft models - tumor formation following in vitro treatment and ex-vivo spheroid formation following in vivo treatment. Intriguingly, NAC, used to mitigate AAP's liver toxicity, did not rescue cells from AAP's anti-CSC effects, and AAP failed to reduce glutathione levels in tumor xenograft in contrast to mice liver tissue suggesting nonglutathione-related MOA. In fact, AAP mediates its anti-CSC effect via inhibition of STAT3. AAP directly binds to STAT3 with an affinity in the low micromolar range and a high degree of specificity for STAT3 relative to STAT1. These findings have high immediate translational significance concerning advancing AAP with NAC rescue to selectively rescue hepatotoxicity while inhibiting CSCs. The novel mechanism of selective STAT3 inhibition has implications for developing rational anticancer combinations and better patient selection (predictive biomarkers) for clinical studies and developing novel selective STAT3 inhibitors using AAP's molecular scaffold.


Asunto(s)
Acetaminofén/farmacología , Antineoplásicos/farmacología , Radicales Libres/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Antígeno AC133/metabolismo , Acetaminofén/administración & dosificación , Antineoplásicos/administración & dosificación , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/antagonistas & inhibidores , Neoplasias Pulmonares , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
18.
Mol Cancer Res ; 19(12): 2081-2095, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34521765

RESUMEN

The blood-tumor barrier (BTB) limits the entry of effective chemotherapeutic agents into the brain for treatment of malignant tumors like glioblastoma. Poor drug entry across the BTB allows infiltrative glioma stem cells to evade therapy and develop treatment resistance. Regadenoson, an FDA-approved adenosine A2A receptor (A2AR) agonist, has been shown to increase drug delivery across the blood-brain barrier in non-tumor-bearing rodents without a defined mechanism of enhancing BTB permeability. Here, we characterize the time-dependent impact of regadenoson on brain endothelial cell interactions and paracellular transport, using mouse and rat brain endothelial cells and tumor models. In vitro, A2AR activation leads to disorganization of cytoskeletal actin filaments by 30 minutes, downregulation of junctional protein expression by 4 hours, and reestablishment of endothelial cell integrity by 8 hours. In rats bearing intracranial gliomas, regadenoson treatment results in increase of intratumoral temozolomide concentrations, yet no increased survival noted with combined temozolomide therapy. These findings demonstrate regadenoson's ability to induce brain endothelial structural changes among glioma to increase BTB permeability. The use of vasoactive mediators, like regadenoson, which transiently influences paracellular transport, should further be explored to evaluate their potential to enhance central nervous system treatment delivery to aggressive brain tumors. IMPLICATIONS: This study provides insight on the use of a vasoactive agent to increase exposure of the BTB to chemotherapy with intention to improve glioma treatment efficacy.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Glioma/genética , Receptor de Adenosina A2A/metabolismo , Animales , Neoplasias Encefálicas/mortalidad , Modelos Animales de Enfermedad , Femenino , Glioma/mortalidad , Humanos , Ratones , Ratones SCID , Ratas , Ratas Desnudas , Análisis de Supervivencia , Transfección
20.
Otol Neurotol ; 41(1): 123-132, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568132

RESUMEN

HYPOTHESIS: Both toll-like receptor 4 (TLR4) and downstream neutrophil activity are required for endotoxemia-enhanced blood-labyrinth barrier (BLB) trafficking. BACKGROUND: Aminoglycoside and cisplatin are valuable clinical therapies; however, these drugs often cause life-long hearing loss. Endotoxemia enhances the ototoxicity of aminoglycosides and cisplatin in a TLR4 dependent mechanism for which downstream proinflammatory signaling orchestrates effector immune cells including neutrophils. Neutrophil-mediated vascular injury (NMVI) can enhance molecular trafficking across endothelial barriers and may contribute to endotoxemia-enhanced drug-induced ototoxicity. METHODS: Lipopolysaccharide (LPS) hypo-responsive TLR4-KO mice and congenitally neutropenic granulocyte colony-stimulating factor (GCSF) GCSF-KO mice were studied to investigate the relative contributions of TLR4 signaling and downstream neutrophil activity to endotoxemia-enhanced BLB trafficking. C57Bl/6 wild-type mice were used as a positive control. Mice were treated with LPS and 24 hours later cochleae were analyzed for gene transcription of innate inflammatory cytokine/chemokine signaling molecules, neutrophil recruitment, and vascular trafficking of the paracellular tracer biocytin-TMR. RESULTS: Cochlear transcription of innate proinflammatory cytokines/chemokines was increased in endotoxemic C57Bl/6 and GCSF-KO, but not in TLR4-KO mice. More neutrophils were recruited to endotoxemic C57Bl/6 cochleae compared with both TLR4 and GCSF-KO cochleae. Endotoxemia enhanced BLB trafficking of biocytin-TMR in endotoxemic C57Bl/6 cochleae and this was attenuated in both TLR4 and GCSF-KO mice. CONCLUSION: Together these results suggest that TLR4-mediated innate immunity cytokine/chemokine signaling alone is not sufficient for endotoxemia-enhanced trafficking of biocytin-TMR and that downstream neutrophil activity is required to enhance BLB trafficking. Clinically, targeting neutrophilic inflammation could protect hearing during aminoglycoside, cisplatin, or other ototoxic drug therapies.


Asunto(s)
Citocinas/inmunología , Oído Interno/inmunología , Endotoxemia/inmunología , Infiltración Neutrófila/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Animales , Quimiotaxis de Leucocito/inmunología , Inflamación/inducido químicamente , Inflamación/inmunología , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Neutrófilos/inmunología , Ototoxicidad/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda