Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179666

RESUMEN

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Asunto(s)
Cromatina , Placenta , Animales , Factor de Unión a CCCTC/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Evolución Molecular , Femenino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Embarazo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Cell ; 181(5): 1062-1079.e30, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32386547

RESUMEN

Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Alanina/genética , Animales , Secuencia de Bases/genética , Expansión de las Repeticiones de ADN/fisiología , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Mutación/genética , Linaje , Sindactilia/genética , Factores de Transcripción/metabolismo
3.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595451

RESUMEN

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Asunto(s)
Momento de Replicación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , ADN/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias , Elementos de Facilitación Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
4.
Cell ; 161(5): 1012-1025, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25959774

RESUMEN

Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.


Asunto(s)
Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Animales , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Humanos , Deformidades Congénitas de las Extremidades/genética , Ratones , Regiones Promotoras Genéticas , ARN no Traducido/genética , ARN no Traducido/metabolismo , Receptor EphA4/genética
5.
Mol Cell ; 82(1): 190-208.e17, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932975

RESUMEN

Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.


Asunto(s)
Elementos de Facilitación Genéticos , Sitios Genéticos , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Inactivación del Cromosoma X , Cromosoma X , Animales , Diferenciación Celular , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regulación hacia Arriba
6.
Nature ; 614(7948): 564-571, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755093

RESUMEN

Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.


Asunto(s)
Nucléolo Celular , Proteína HMGB1 , Humanos , Arginina/genética , Arginina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Síndrome , Mutación del Sistema de Lectura , Transición de Fase
7.
Nature ; 592(7852): 93-98, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33568816

RESUMEN

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Asunto(s)
Extremidades , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , ARN Largo no Codificante/genética , Eliminación de Secuencia/genética , Transcripción Genética , Activación Transcripcional/genética , Animales , Línea Celular , Cromatina/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos
8.
Nature ; 600(7890): 731-736, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819668

RESUMEN

Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.


Asunto(s)
Neoplasias , Proteínas Nucleares , Azepinas/farmacología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Oncogenes/genética , Factores de Transcripción/genética
9.
Mol Cell ; 74(6): 1110-1122, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226276

RESUMEN

During embryogenesis, precise gene transcription in space and time requires that distal enhancers and promoters communicate by physical proximity within gene regulatory landscapes. To achieve this, regulatory landscapes fold in nuclear space, creating complex 3D structures that influence enhancer-promoter communication and gene expression and that, when disrupted, can cause disease. Here, we provide an overview of how enhancers and promoters construct regulatory landscapes and how multiple scales of 3D chromatin structure sculpt their communication. We focus on emerging views of what enhancer-promoter contacts and chromatin domains physically represent and how two antagonistic fundamental forces-loop extrusion and homotypic attraction-likely form them. We also examine how these same forces spatially separate regulatory landscapes by functional state, thereby creating higher-order compartments that reconfigure during development to enable proper enhancer-promoter communication.


Asunto(s)
Cromatina/ultraestructura , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genoma , Regiones Promotoras Genéticas , Transcripción Genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Conformación Molecular
10.
Nucleic Acids Res ; 52(W1): W148-W158, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769069

RESUMEN

In the era of high throughput sequencing, special software is required for the clinical evaluation of genetic variants. We developed REEV (Review, Evaluate and Explain Variants), a user-friendly platform for clinicians and researchers in the field of rare disease genetics. Supporting data was aggregated from public data sources. We compared REEV with seven other tools for clinical variant evaluation. REEV (semi-)automatically fills individual ACMG criteria facilitating variant interpretation. REEV can store disease and phenotype data related to a case to use these for phenotype similarity measures. Users can create public permanent links for individual variants that can be saved as browser bookmarks and shared. REEV may help in the fast diagnostic assessment of genetic variants in a clinical as well as in a research context. REEV (https://reev.bihealth.org/) is free and open to all users and there is no login requirement.


Asunto(s)
Variación Genética , Programas Informáticos , Humanos , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Bases de Datos Genéticas
11.
Nature ; 566(7745): 496-502, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30787437

RESUMEN

Mammalian organogenesis is a remarkable process. Within a short timeframe, the cells of the three germ layers transform into an embryo that includes most of the major internal and external organs. Here we investigate the transcriptional dynamics of mouse organogenesis at single-cell resolution. Using single-cell combinatorial indexing, we profiled the transcriptomes of around 2 million cells derived from 61 embryos staged between 9.5 and 13.5 days of gestation, in a single experiment. The resulting 'mouse organogenesis cell atlas' (MOCA) provides a global view of developmental processes during this critical window. We use Monocle 3 to identify hundreds of cell types and 56 trajectories, many of which are detected only because of the depth of cellular coverage, and collectively define thousands of corresponding marker genes. We explore the dynamics of gene expression within cell types and trajectories over time, including focused analyses of the apical ectodermal ridge, limb mesenchyme and skeletal muscle.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Organogénesis/genética , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Marcadores Genéticos , Masculino , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Especificidad de Órganos/genética , Análisis de Secuencia de ARN , Factores de Tiempo
12.
Bioessays ; 45(10): e2300010, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381881

RESUMEN

Deletions, duplications, insertions, inversions, and translocations, collectively called structural variations (SVs), affect more base pairs of the genome than any other sequence variant. The recent technological advancements in genome sequencing have enabled the discovery of tens of thousands of SVs per human genome. These SVs primarily affect non-coding DNA sequences, but the difficulties in interpreting their impact limit our understanding of human disease etiology. The functional annotation of non-coding DNA sequences and methodologies to characterize their three-dimensional (3D) organization in the nucleus have greatly expanded our understanding of the basic mechanisms underlying gene regulation, thereby improving the interpretation of SVs for their pathogenic impact. Here, we discuss the various mechanisms by which SVs can result in altered gene regulation and how these mechanisms can result in rare genetic disorders. Beyond changing gene expression, SVs can produce novel gene-intergenic fusion transcripts at the SV breakpoints.


Asunto(s)
Regulación de la Expresión Génica , Genoma Humano , Humanos , Mapeo Cromosómico , Genoma Humano/genética , Secuencia de Bases , Regulación de la Expresión Génica/genética
13.
Proc Natl Acad Sci U S A ; 119(22): e2201883119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35617427

RESUMEN

Polycomb-group proteins play critical roles in gene silencing through the deposition of histone H3 lysine 27 trimethylation (H3K27me3) and chromatin compaction. This process is essential for embryonic stem cell (ESC) pluripotency, differentiation, and development. Polycomb repressive complex 2 (PRC2) can both read and write H3K27me3, enabling progressive spreading of H3K27me3 on the linear genome. Long-range Polycomb-associated DNA contacts have also been described, but their regulation and role in gene silencing remain unclear. Here, we apply H3K27me3 HiChIP, a protein-directed chromosome conformation method, and optical reconstruction of chromatin architecture to profile long-range Polycomb-associated DNA loops that span tens to hundreds of megabases across multiple topological associated domains in mouse ESCs and human induced pluripotent stem cells. We find that H3K27me3 loop anchors are enriched for Polycomb nucleation points and coincide with key developmental genes. Genetic deletion of H3K27me3 loop anchors results in disruption of spatial contact between distant loci and altered H3K27me3 in cis, both locally and megabases away on the same chromosome. In mouse embryos, loop anchor deletion leads to ectopic activation of the partner gene, suggesting that Polycomb-associated loops control gene silencing during development. Further, we find that alterations in PRC2 occupancy resulting from an RNA binding­deficient EZH2 mutant are accompanied by loss of Polycomb-associated DNA looping. Together, these results suggest PRC2 uses RNA binding to enhance long-range chromosome folding and H3K27me3 spreading. Developmental gene loci have unique roles in Polycomb spreading, emerging as important architectural elements of the epigenome.


Asunto(s)
Cromosomas , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Histonas , Complejo Represivo Polycomb 2 , Animales , Inmunoprecipitación de Cromatina/métodos , Cromosomas/química , Cromosomas/metabolismo , Embrión de Mamíferos , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Conformación de Ácido Nucleico , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo
14.
Hum Genet ; 143(5): 683-694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38592547

RESUMEN

Generalized lipodystrophy is a feature of various hereditary disorders, often leading to a progeroid appearance. In the present study we identified a missense and a frameshift variant in a compound heterozygous state in SUPT7L in a boy with intrauterine growth retardation, generalized lipodystrophy, and additional progeroid features. SUPT7L encodes a component of the transcriptional coactivator complex STAGA. By transcriptome sequencing, we showed the predicted missense variant to cause aberrant splicing, leading to exon truncation and thereby to a complete absence of SUPT7L in dermal fibroblasts. In addition, we found altered expression of genes encoding DNA repair pathway components. This pathway was further investigated and an increased rate of DNA damage was detected in proband-derived fibroblasts and genome-edited HeLa cells. Finally, we performed transient overexpression of wildtype SUPT7L in both cellular systems, which normalizes the number of DNA damage events. Our findings suggest SUPT7L as a novel disease gene and underline the link between genome instability and progeroid phenotypes.


Asunto(s)
Mutación con Pérdida de Función , Humanos , Masculino , Células HeLa , Lipodistrofia Generalizada Congénita/genética , Fibroblastos/metabolismo , Daño del ADN , Mutación Missense , Reparación del ADN/genética , Lipodistrofia/genética , Factores de Transcripción/genética , Retardo del Crecimiento Fetal/genética
15.
Am J Hum Genet ; 108(9): 1725-1734, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34433009

RESUMEN

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging. Here, we report on two unrelated families with individuals affected by bilateral hypoplasia of the femoral bones, both harboring de novo duplications on chromosome 10q24.32. The ∼0.5 Mb duplications include FGF8, a key regulator of limb development and several limb enhancer elements. To functionally characterize these variants, we analyzed the local chromatin architecture in the affected individuals' cells and re-engineered the duplications in mice by using CRISPR-Cas9 genome editing. We found that the duplications were associated with ectopic chromatin contacts and increased FGF8 expression. Transgenic mice carrying the heterozygous tandem duplication including Fgf8 exhibited proximal shortening of the limbs, resembling the human phenotype. To evaluate whether the phenotype was a result of gene dosage, we generated another transgenic mice line, carrying the duplication on one allele and a concurrent Fgf8 deletion on the other allele, as a control. Surprisingly, the same malformations were observed. Capture Hi-C experiments revealed ectopic interaction with the duplicated region and Fgf8, indicating a position effect. In summary, we show that duplications at the FGF8 locus are associated with femoral hypoplasia and that the phenotype is most likely the result of position effects altering FGF8 expression rather than gene dosage effects.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 10/química , Variaciones en el Número de Copia de ADN , Factor 8 de Crecimiento de Fibroblastos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Adolescente , Alelos , Animales , Sistemas CRISPR-Cas , Preescolar , Cromatina/química , Cromatina/metabolismo , Cromosomas Humanos Par 10/metabolismo , Elementos de Facilitación Genéticos , Familia , Femenino , Fémur/anomalías , Fémur/diagnóstico por imagen , Fémur/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Edición Génica , Heterocigoto , Humanos , Lactante , Deformidades Congénitas de las Extremidades Inferiores/diagnóstico por imagen , Deformidades Congénitas de las Extremidades Inferiores/metabolismo , Deformidades Congénitas de las Extremidades Inferiores/patología , Masculino , Ratones , Ratones Transgénicos , Linaje , Fenotipo
16.
Nat Rev Genet ; 19(7): 453-467, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29692413

RESUMEN

Structural and quantitative chromosomal rearrangements, collectively referred to as structural variation (SV), contribute to a large extent to the genetic diversity of the human genome and thus are of high relevance for cancer genetics, rare diseases and evolutionary genetics. Recent studies have shown that SVs can not only affect gene dosage but also modulate basic mechanisms of gene regulation. SVs can alter the copy number of regulatory elements or modify the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains. As a result of these position effects, SVs can influence the expression of genes distant from the SV breakpoints, thereby causing disease. The impact of SVs on the 3D genome and on gene expression regulation has to be considered when interpreting the pathogenic potential of these variant types.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Variaciones en el Número de Copia de ADN , Dosificación de Gen , Regulación de la Expresión Génica/fisiología , Genoma Humano/fisiología , Humanos
17.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33402532

RESUMEN

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv341E mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv341E mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor-related pathways in brain development.


Asunto(s)
Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Manosiltransferasas/metabolismo , Anomalías Múltiples/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Epilepsia/genética , Glicosilfosfatidilinositoles/deficiencia , Hipocampo/metabolismo , Discapacidad Intelectual/genética , Manosiltransferasas/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación , Mutación Missense , Fenotipo , Ingeniería de Proteínas/métodos , Convulsiones/genética , Convulsiones/fisiopatología
18.
Am J Hum Genet ; 106(6): 872-884, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32470376

RESUMEN

Genome-wide analysis methods, such as array comparative genomic hybridization (CGH) and whole-genome sequencing (WGS), have greatly advanced the identification of structural variants (SVs) in the human genome. However, even with standard high-throughput sequencing techniques, complex rearrangements with multiple breakpoints are often difficult to resolve, and predicting their effects on gene expression and phenotype remains a challenge. Here, we address these problems by using high-throughput chromosome conformation capture (Hi-C) generated from cultured cells of nine individuals with developmental disorders (DDs). Three individuals had previously been identified as harboring duplications at the SOX9 locus and six had been identified with translocations. Hi-C resolved the positions of the duplications and was instructive in interpreting their distinct pathogenic effects, including the formation of new topologically associating domains (neo-TADs). Hi-C was very sensitive in detecting translocations, and it revealed previously unrecognized complex rearrangements at the breakpoints. In several cases, we observed the formation of fused-TADs promoting ectopic enhancer-promoter interactions that were likely to be involved in the disease pathology. In summary, we show that Hi-C is a sensible method for the detection of complex SVs in a clinical setting. The results help interpret the possible pathogenic effects of the SVs in individuals with DDs.


Asunto(s)
Cromosomas Humanos/genética , Discapacidades del Desarrollo/genética , Genoma Humano/genética , Conformación Molecular , Translocación Genética/genética , Ensamble y Desensamble de Cromatina/genética , Puntos de Rotura del Cromosoma , Estudios de Cohortes , Humanos , Factor de Transcripción SOX9/genética , Duplicaciones Segmentarias en el Genoma/genética
19.
Am J Hum Genet ; 107(5): 802-814, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022222

RESUMEN

The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.


Asunto(s)
Cromosomas Humanos Par 17/química , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/genética , Factores de Transcripción/genética , Adulto , Secuencia de Aminoácidos , Diferenciación Celular , Reprogramación Celular , Niño , Mapeo Cromosómico , Estudios de Cohortes , Elementos de Facilitación Genéticos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Genes Dominantes , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Polimorfismo Genético , Cultivo Primario de Células , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
20.
Genet Med ; 25(11): 100928, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427568

RESUMEN

PURPOSE: HOXD13 is an important regulator of limb development. Pathogenic variants in HOXD13 cause synpolydactyly type 1 (SPD1). How different types and positions of HOXD13 variants contribute to genotype-phenotype correlations, penetrance, and expressivity of SPD1 remains elusive. Here, we present a novel cohort and a literature review to elucidate HOXD13 phenotype-genotype correlations. METHODS: Patients with limb anomalies suggestive of SPD1 were selected for analysis of HOXD13 by Sanger sequencing, repeat length analysis, and next-generation sequencing. Literature was reviewed for HOXD13 heterozygotes. Variants were annotated for phenotypic data. Severity was calculated, and cluster and decision-tree analyses were performed. RESULTS: We identified 98 affected members of 38 families featuring 11 different (likely) causative variants and 4 variants of uncertain significance. The most frequent (25/38) were alanine repeat expansions. Phenotypes ranged from unaffected heterozygotes to severe osseous synpolydactyly, with intra- and inter-familial heterogeneity and asymmetry. A literature review provided 160 evaluable affected members of 49 families with SPD1. Computer-aided analysis only corroborated a positive correlation between alanine repeat length and phenotype severity. CONCLUSION: Our findings support that HOXD13-protein condensation in addition to haploinsufficiency is the molecular pathomechanism of SPD1. Our data may, also, facilitate the interpretation of synpolydactyly radiographs by future automated tools.


Asunto(s)
Proteínas de Homeodominio , Sindactilia , Humanos , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Sindactilia/genética , Genotipo , Fenotipo , Linaje , Alanina/genética , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda