Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Development ; 150(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882667

RESUMEN

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Asunto(s)
Cartílago Articular , Animales , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Células Madre , Diferenciación Celular/genética , Línea Celular , Modelos Animales de Enfermedad , Condrogénesis/genética
2.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35005773

RESUMEN

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Cartílago Hialino/citología , Regeneración , Ingeniería de Tejidos/métodos , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrogénesis , Fibroblastos/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/farmacología , Cartílago Hialino/metabolismo , Cartílago Hialino/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID
3.
Dev Biol ; 486: 71-80, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35353991

RESUMEN

It is long-established that innervation-dependent production of neurotrophic factors is required for blastema formation and epimorphic regeneration of appendages in fish and amphibians. The regenerating mouse digit tip and the human fingertip are mammalian models for epimorphic regeneration, and limb denervation in mice inhibits this response. A complicating issue of limb denervation studies in terrestrial vertebrates is that the experimental models also cause severe paralysis therefore impairing appendage use and diminishing mechanical loading of the denervated tissues. Thus, it is unclear whether the limb denervation impairs regeneration via loss of neurotrophic signaling or loss of mechanical load, or both. Herein, we developed a novel surgical procedure in which individual digits were specifically denervated without impairing ambulation and mechanical loading. We demonstrate that digit specific denervation does not inhibit but attenuates digit tip regeneration, in part due to a delay in wound healing. However, treating denervated digits with a wound dressing that enhances closure results in a partial rescue of the regeneration response. Contrary to the current understanding of mammalian epimorphic regeneration, these studies demonstrate that mouse digit tip regeneration is not peripheral nerve dependent, an observation that should inform continued mammalian regenerative medicine approaches.


Asunto(s)
Amputación Quirúrgica , Extremidades , Animales , Desnervación , Extremidades/fisiología , Mamíferos , Ratones , Cicatrización de Heridas/fisiología
4.
Wound Repair Regen ; 31(1): 17-27, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36177656

RESUMEN

Humans and mice have the ability to regenerate the distal digit tip, the terminal phalanx (P3) in response to amputation. What distinguishes P3 regeneration from regenerative failure is formation of the blastema, a proliferative structure that undergoes morphogenesis to regenerate the amputated tissues. P3 regeneration is characterised by the phases of inflammation, tissue histolysis and expansive bone degradation with simultaneous blastema formation, wound closure and finally blastemal differentiation to restore the amputated structures. While each regenerating digit faithfully progresses through all phases of regeneration, phase progression has traditionally been delineated by time, that is, days postamputation (DPA), yet there is widespread variability in the timing of the individual phases. To diminish variability between digits during tissue histolysis and blastema formation, we have established an in-vivo method using microcomputed tomography (micro CT) scanning to identify five distinct stages of the early regeneration response based on anatomical changes of the digit stump. We report that categorising the initial phases of digit regeneration by stage rather than time greatly diminishes the variability between digits with respect to changes in bone volume and length. Also, stages correlate with the levels of cell proliferation, osteoclast recruitment and osteoprogenitor cell recruitment. Importantly, micro CT staging provides a means to estimate open versus closed digit wounds. We demonstrate two spatially distinct and stage specific bone repair/regeneration responses that occur during P3 regeneration. Collectively, these studies showcase the utility of micro CT imaging to infer the composition of radiolucent soft tissues during P3 blastema formation. Specifically, the staging system identifies the onset of cell proliferation, osteoclastogenesis, osteoprogenitor recruitment, the spatial initiation of de novo bone formation and epidermal closure.


Asunto(s)
Osteogénesis , Cicatrización de Heridas , Ratones , Animales , Humanos , Microtomografía por Rayos X , Cicatrización de Heridas/fisiología , Osteogénesis/fisiología , Osteoclastos/fisiología , Regeneración Ósea/fisiología
5.
J Exp Zool B Mol Dev Evol ; 336(2): 165-179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31951104

RESUMEN

Mammalian epimorphic regeneration is rare and digit tip regeneration in mice is the best-studied model for a multi-tissue regenerative event that involves blastema formation. Digit tip regeneration parallels human fingertip regeneration, thus understanding the details of this response can provide insight into developing strategies to expand the potential of human regeneration. Following amputation, the digit stump undergoes a strong histolytic response involving osteoclast-mediated bone degradation that is spatially and temporally linked to the expansion of blastema osteoprogenitor cells. Blastemal differentiation occurs via direct intramembranous ossification. Although robust, digit regeneration is imperfect: The amputated cortical bone is replaced with woven bone and there is excessive bone regeneration restricted to the dorsal-ventral axis. Ontogenetic and phylogenetic analysis of digit regeneration in amphibians and mammals raise the possibility that mammalian blastema is a product of convergent evolution and we hypothesize that digit tip regeneration evolved from a nonregenerative precondition. A model is proposed in which the mammalian blastema evolved in part from an adaptation of two bone repair strategies (the bone remodeling cycle and fracture healing) both of which are conserved across tetrapod vertebrates. The view that epimorphic regeneration evolved in mammals from a nonregenerative precondition is supported by recent studies demonstrating that complex regenerative responses can be induced from a number of different nonregenerative amputation wounds by specific modification of the healing response.


Asunto(s)
Evolución Biológica , Mamíferos/genética , Mamíferos/fisiología , Regeneración/fisiología , Dedos del Pie/fisiología , Animales , Miembro Anterior/fisiología , Regeneración/genética
6.
Wound Repair Regen ; 29(1): 196-205, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815252

RESUMEN

Complete extremity regeneration in mammals is restricted to distal amputations of the digit tip, the terminal phalanx (P3). In mice, P3 regeneration is mediated via the formation of a blastema, a transient population of progenitor cells that form from the blending of periosteal and endosteal/marrow compartmentalized cells that undergo differentiation to restore the amputated structures. Compartmentalized blastema cells are formed independently, and periosteal compartment-derived cells are required for restoration of amputated skeletal length. P3 regenerative capacity is progressively attenuated at increasingly more proximal amputation levels, eventually resulting in regenerative failure. The continuum of regenerative capacity within the P3 wound milieu is a unique model to investigate mammalian blastema formation in response to distal amputation, as well as the healing response associated with regenerative failure at proximal amputation levels. We report that P3 proximal amputation healing, previously reported to result in regenerative failure, is not an example of complete regenerative failure, but instead is characterized by a limited bone regeneration response restricted to the endosteal/marrow compartment. The regeneration response is mediated by blastema formation within the endosteal/marrow compartment, and blastemal osteogenesis progresses through intramembranous ossification in a polarized proximal to distal sequence. Unlike bone regeneration following distal P3 amputation, osteogenesis within the periosteal compartment is not observed in response to proximal P3 amputation. We provide evidence that proximal P3 amputation initiates the formation of fibrotic tissue that isolates the endosteal/marrow compartment from the periosteal compartment and wound epidermis. While the fibrotic response is transient and later resolved, these studies demonstrate that blastema formation and fibrosis can occur in close proximity, with the regenerative response dominating the final outcome. Moreover, the results suggest that the attenuated proximal P3 regeneration response is associated with the absence of periosteal-compartment participation in blastema formation and bone regeneration.


Asunto(s)
Amputación Quirúrgica , Regeneración Ósea/fisiología , Miembro Posterior/fisiología , Osteogénesis/fisiología , Cicatrización de Heridas/fisiología , Heridas y Lesiones/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Miembro Posterior/diagnóstico por imagen , Miembro Posterior/cirugía , Ratones , Heridas y Lesiones/patología , Microtomografía por Rayos X
7.
Dev Biol ; 445(2): 237-244, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30458171

RESUMEN

Mice are intrinsically capable of regenerating the tips of their digits after amputation. Mouse digit tip regeneration is reported to be a peripheral nerve-dependent event. However, it is presently unknown what types of nerves and Schwann cells innervate the digit tip, and to what extent these cells regenerate in association with the regenerative response. Given the necessity of peripheral nerves for mammalian regeneration, we investigated the neuroanatomy of the unamputated, regenerating, and regenerated mouse digit tip. Using immunohistochemistry for ß-III-tubulin (ß3T) or neurofilament H (NFH), substance P (SP), tyrosine hydroxylase (TH), myelin protein zero (P0), and glial fibrillary acidic protein (GFAP), we identified peripheral nerve axons (sensory and sympathetic), and myelinating- and non-myelinating-Schwann cells. Our findings show that the digit tip is innervated by two digital nerves that each bifurcate into a bone marrow (BM) and connective tissue (CT) branch. The BM branches are composed of sympathetic axons that are ensheathed by non-myelinating-Schwann cells whereas the CT branches are composed of sensory and sympathetic axons and are ensheathed by myelinating- and non-myelinating-Schwann cells. The regenerated digit neuroanatomy differs from unamputated digit in several key ways. First, there is 7.5 fold decrease in CT branch axons in the regenerated digit compared to the unampuated digit. Second, there is a 5.6 fold decrease in myelinating-Schwann cells in the regenerated digit compared to the unamputated digit that is consistent with the decrease in CT branch axons. Importantly, we also find that the central portion of the regenerating digit blastema is aneural, with axons and Schwann cells restricted to peripheral and distal blastema regions. Finally, we show that even with impaired innervation, digits maintain the ability to regenerate after re-amputation. Taken together, these data indicate that nerve regeneration is impaired in the context of mouse digit tip regeneration.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Regeneración/fisiología , Amputación Quirúrgica , Animales , Axones/ultraestructura , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Ratones , Proteínas de Neurofilamentos/metabolismo , Nervios Periféricos/anatomía & histología , Nervios Periféricos/fisiología , Células de Schwann/fisiología , Dedos del Pie/anatomía & histología , Dedos del Pie/inervación , Dedos del Pie/fisiología , Tubulina (Proteína)/metabolismo
8.
Development ; 144(21): 3907-3916, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28935712

RESUMEN

In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration. Here, using the regenerating mouse digit tip as a mammalian model, we demonstrate that macrophages are essential for the regeneration process. Using cell-depletion strategies, we show that regeneration is completely inhibited; bone histolysis does not occur, wound re-epithelialization is inhibited and the blastema does not form. Although rescue of epidermal wound closure in the absence of macrophages promotes blastema accumulation, it does not rescue cell differentiation, indicating that macrophages play a key role in the redifferentiation of the blastema. We provide additional evidence that although bone degradation is a component, it is not essential to the overall regenerative process. These findings show that macrophages play an essential role in coordinating the epimorphic regenerative response in mammals.


Asunto(s)
Extremidades/fisiología , Macrófagos/fisiología , Regeneración/fisiología , Amputación Quirúrgica , Animales , Resorción Ósea/patología , Recuento de Células , Ácido Clodrónico/administración & dosificación , Ácido Clodrónico/farmacología , Epidermis/efectos de los fármacos , Epidermis/fisiología , Femenino , Liposomas , Macrófagos/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Especificidad de Órganos , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Regeneración/efectos de los fármacos
9.
Dev Biol ; 433(2): 190-199, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29291973

RESUMEN

Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration.


Asunto(s)
Mamíferos/fisiología , Regeneración/fisiología , Amputación Quirúrgica , Animales , Cuernos de Venado/fisiología , Ciervos/fisiología , Pabellón Auricular/lesiones , Pabellón Auricular/fisiología , Traumatismos de los Dedos/fisiopatología , Dedos/fisiología , Humanos , Ratones , Morfogénesis , Murinae/fisiología , Células Madre/fisiología , Dedos del Pie/fisiología , Cicatrización de Heridas/fisiología
10.
Wound Repair Regen ; 26(3): 263-273, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-30120800

RESUMEN

While mammals cannot regenerate amputated limbs, mice and humans have regenerative ability restricted to amputations transecting the digit tip, including the terminal phalanx (P3). In mice, the regeneration process is epimorphic and mediated by the formation of a blastema comprised of undifferentiated proliferating cells that differentiate to regenerate the amputated structures. Blastema formation distinguishes the regenerative response from a scar-forming healing response. The mouse digit tip serves as a preclinical model to investigate mammalian blastema formation and endogenous regenerative capabilities. We report that P3 blastema formation initiates prior to epidermal closure and concurrent with the bone histolytic response. In this early healing response, proliferation and cells entering the early stages of osteogenesis are localized to the periosteal and endosteal bone compartments. After the completion of stump bone histolysis, epidermal closure is completed and cells associated with the periosteal and endosteal compartments blend to form the blastema proper. Osteogenesis associated with the periosteum occurs as a polarized progressive wave of new bone formation that extends from the amputated stump and restores skeletal length. Bone patterning is restored along the proximal-distal and medial digit axes, but is imperfect in the dorsal-ventral axis with the regeneration of excessive new bone that accounts for the enhanced regenerated bone volume noted in previous studies. Periosteum depletion studies show that this compartment is required for the regeneration of new bone distal to the original amputation plane. These studies provide evidence that blastema formation initiates early in the healing response and that the periosteum is an essential tissue for successful epimorphic regeneration in mammals.


Asunto(s)
Amputación Quirúrgica , Osteogénesis/fisiología , Periostio/metabolismo , Regeneración/fisiología , Medicina Regenerativa , Falanges de los Dedos del Pie/fisiología , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Endogámicos , Neovascularización Fisiológica , Falanges de los Dedos del Pie/lesiones
11.
Gerontology ; 64(3): 300-308, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29316544

RESUMEN

Aging is associated with a significant decline of tissue repair and regeneration, ultimately resulting in tissue dysfunction, multimorbidity, and death. Salamanders possess remarkable regenerative abilities and have been studied with the prospect of inducing regeneration in humans and counteracting regenerative decline with aging. However, epimorphic regeneration, the full replacement of amputated structures, also occurs in mammals. One of the best studied models is digit tip regeneration, which is described for mice, and occurs in humans in a comparable manner. To accomplish regeneration, the amputated digit tip has to undergo three interdependent, overlapping steps: (i) wound healing without formation of a scar; (ii) formation of a blastema, a highly proliferative cell mass; and (iii) spatiotemporally regulated differentiation to generate a pattern similar to the original structure. Aging likely interferes with each of these steps. In this article, we provide an overview of the critical signaling pathways for regeneration, as revealed by investigating mammalian digit regeneration, the possible impact of aging on these pathways, and approaches to induce regeneration in the elderly. We hypothesize that with aging, increased Wnt signaling, NF-κB and tumor suppressor activity, and loss of positional information hampers regeneration. Knowledge about the impact of aging on regenerative mechanisms will enable us to safely activate endogenous regeneration in the elderly, and to generate a regeneration-permissive environment for cell therapies.


Asunto(s)
Envejecimiento/fisiología , Regeneración/fisiología , Envejecimiento/inmunología , Envejecimiento/patología , Animales , Reprogramación Celular , Extremidades , Humanos , Ratones , Modelos Biológicos , Neovascularización Fisiológica , Regeneración/inmunología , Medicina Regenerativa , Transducción de Señal , Vía de Señalización Wnt , Cicatrización de Heridas/fisiología
12.
Dev Biol ; 382(1): 98-109, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23916851

RESUMEN

Previously we demonstrated that BMP signaling is required for endogenous digit tip regeneration, and that treatment with BMP-2 or -7 induces a regenerative response following amputation at regeneration-incompetent levels (Yu et al., 2010, 2012). Both endogenous regeneration and BMP-induced regeneration are associated with the transient formation of a blastema, however the formation of a regeneration blastema in mammals is poorly understood. In this study, we focus on how blastema cells respond to BMP signaling during neonatal digit regeneration in mice. First, we show that blastema cells retain regenerative properties after expansion in vitro, and when re-introduced into the amputated digit, these cells display directed migration in response to BMP-2. However, in vitro studies demonstrate that BMP-2 alone does not influence blastema cell migration, suggesting a requirement of another pivotal downstream factor for cell recruitment. We show that blastema cell migration is stimulated by the cytokine, SDF-1α, and that SDF-1α is expressed by the wound epidermis as well as endothelial cells of the blastema. Blastema cells express both SDF-1α receptors, CXCR4 and CXCR7, although the migration response is inhibited by the CXCR4-specific antagonist, AMD3100. Mice treated with AMD3100 display a partial inhibition of skeletal regrowth associated with the regeneration response. We provide evidence that BMP-2 regulates Sdf-1α expression in endothelial cells but not cells of the wound epidermis. Finally, we show that SDF-1α-expressing COS1 cells engrafted into a regeneration-incompetent digit amputation wound resulted in a locally enhanced population of CXCR4 positive cells, and induced a partial regenerative response. Taken together, this study provides evidence that one downstream mechanism of BMP signaling during mammalian digit regeneration involves activation of SDF-1α/CXCR4 signaling by endothelial cells to recruit blastema cells.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Quimiocina CXCL12/metabolismo , Extremidades/fisiología , Receptores CXCR4/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Animales , Animales Recién Nacidos , Células COS , Movimiento Celular/efectos de los fármacos , Separación Celular , Células Cultivadas , Chlorocebus aethiops , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Inmunohistoquímica , Ratones , Osteogénesis/efectos de los fármacos , Proteínas Recombinantes/farmacología
13.
Proc Natl Acad Sci U S A ; 108(35): 14560-5, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21841138

RESUMEN

Regeneration of peripheral differentiated tissue in mammals is rare, and regulators of this process are largely unknown. We carried out a forward genetic screen in mice using N-ethyl-N-nitrosourea mutagenesis to identify genetic mutations that affect regenerative healing in vivo. More than 400 pedigrees were screened for closure of a through-and-through punch wound in the mouse ear. This led to the identification of a single pedigree with a heritable, fast, and regenerative wound-healing phenotype. Within 5 wk after ear-punch, a threefold decrease in the diameter of the wound was observed in the mutant mice compared with the wild-type mice. At 22 wk, new cartilage, hair follicles, and sebaceous glands were observed in the newly generated tissue. This trait was mapped to a point mutation in a receptor for TGF-ß, TGFBR1. Mouse embryonic fibroblasts from the affected mice had increased expression of a subset of TGF-ß target genes, suggesting that the mutation caused partial activation of the receptor. Further, bone marrow stromal cells from the mutant mice more readily differentiated to chondrogenic precursors, providing a plausible explanation for the enhanced development of cartilage islands in the regenerated ears. This mutant mouse strain provides a unique model to further explore regeneration in mammals and, in particular, the role of TGFBR1 in chondrogenesis and regenerative wound healing.


Asunto(s)
Mutación Puntual , Proteínas Serina-Treonina Quinasas/fisiología , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Cicatrización de Heridas , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Condrogénesis , Etilnitrosourea , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/genética , Regeneración , Proteína Smad2/metabolismo
14.
Dev Biol ; 372(2): 263-73, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23041115

RESUMEN

Bone morphogenetic proteins (BMPs) are required for bone development, the repair of damage skeletal tissue, and the regeneration of the mouse digit tip. Previously we showed that BMP treatment can induce a regeneration response in mouse digits amputated at a proximal level of the terminal phalangeal element (P3) (Yu et al., 2010). In this study, we show that the regeneration-inductive ability of BMP2 extends to amputations at the level of the second phalangeal element (P2) of neonatal digits, and the hindlimb of adult limbs. In these models the induced regenerative response is restricted in a segment-specific manner, thus amputated skeletal elements regenerate distally patterned skeletal structures but does not form joints or more distal skeletal elements. Studies on P2 amputations indicate that BMP2-induced regeneration is associated with a localized proliferative response and the transient expression of established digit blastema marker genes. This is followed by the formation of a new endochondral ossification center at the distal end of the bone stump. The endochondral ossification center contains proliferating chondrocytes that establish a distal proliferative zone and differentiate proximally into hypertrophic chondrocytes. Skeletal regeneration occurs from proximal to distal with the appearance of osteoblasts that differentiate in continuity with the amputated stump. Using the polarity of the endochondral ossification centers induced by BMP2 at two different amputation levels, we show that BMP2 activates a level-dependent regenerative response indicative of a positional information network. In summary, our studies provide evidence that BMP2 induces the regeneration of mammalian limb structures by stimulating a new endochondral ossification center that utilizes an existing network of positional information to regulate patterning during skeletal regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Huesos/efectos de los fármacos , Miembro Posterior/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Regeneración/efectos de los fármacos , Amputación Quirúrgica , Animales , Huesos/citología , Huesos/lesiones , Huesos/fisiología , Condrogénesis/efectos de los fármacos , Miembro Posterior/citología , Miembro Posterior/lesiones , Miembro Posterior/fisiología , Ratones
15.
Dev Biol ; 372(2): 229-38, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23036343

RESUMEN

Synovial joints are among the most important structures that give us complex motor abilities as humans. Degenerative joint diseases, such as arthritis, cause loss of normal joint functioning and affect over 40 million people in the USA and approximately 350 million people worldwide. Therapies based on regenerative medicine hold the promise of effectively repairing or replacing damaged joints permanently. Here, for the first time, we introduce a model for synovial joint regeneration utilizing the chick embryo. In this model, a block of tissue that contains the prospective elbow is excised, leaving a window with strips of anterior and posterior tissue intact (window excision, WE). In contrast, we also slice out the same area containing the elbow and the distal piece of the limb is pinned back onto the stump (slice excision, SE). Interestingly, when the elbow is removed via WE, regeneration of the joint takes place, whereas the elbow joint does not regenerate following SE. In order to investigate whether the regeneration response recapitulates the developmental program of forming joints, we used GDF-5 and Autotaxin (Atx) as joint tissue specific markers, and Sox-9 and Col-9 as cartilage markers for in situ hybridization on sections at different time points after WE and SE surgeries. Re-expression of GDF-5 and Atx is observed in the WE samples by 60h after surgery. In contrast, the majority of the samples that underwent SE surgery did not express GDF-5 and Atx. Also, in SE fusion of cartilage elements takes place and the joint interzone does not form. This is indicated by continuous Col-9 expression in SE limbs, whereas Col-9 is downregulated at the joint interzone in the regenerating WE samples. This order and pattern of gene expression observed in regenerates is similar to the development of a joint suggesting that regeneration recapitulates development at the molecular level. This model defines some of the conditions required for inducing joint regeneration in an otherwise nonregenerating environment. This knowledge can be useful for designing new therapeutic approaches for joint loss or for conditions affecting joint integrity in humans.


Asunto(s)
Miembro Anterior/embriología , Miembro Anterior/fisiología , Articulaciones/embriología , Articulaciones/fisiología , Regeneración , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica
16.
Development ; 137(4): 551-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20110320

RESUMEN

The regenerating digit tip of mice is a novel epimorphic response in mammals that is similar to fingertip regeneration in humans. Both display restricted regenerative capabilities that are amputation-level dependent. Using this endogenous regeneration model in neonatal mice, we have found that noggin treatment inhibits regeneration, thus suggesting a bone morphogenetic protein (BMP) requirement. Using non-regenerating amputation wounds, we show that BMP7 or BMP2 can induce a regenerative response. BMP-induced regeneration involves the formation of a mammalian digit blastema. Unlike the endogenous regeneration response that involves redifferentiation by direct ossification (evolved regeneration), the BMP-induced response involves endochondral ossification (redevelopment). Our evidence suggests that BMP treatment triggers a reprogramming event that re-initiates digit tip development at the amputation wound. These studies demonstrate for the first time that the postnatal mammalian digit has latent regenerative capabilities that can be induced by growth factor treatment.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Regeneración/fisiología , Muñones de Amputación/fisiopatología , Animales , Animales Recién Nacidos , Secuencia de Bases , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 7/farmacología , Proteínas Morfogenéticas Óseas/genética , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/genética , Regeneración Ósea/fisiología , Cartilla de ADN/genética , Extremidades/fisiología , Humanos , Hibridación in Situ , Ratones , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteogénesis/fisiología , Proteínas Recombinantes/farmacología , Regeneración/efectos de los fármacos , Regeneración/genética , Transducción de Señal
17.
Dev Growth Differ ; 55(3): 341-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23425387

RESUMEN

Homeodomain-containing transcription factors Dlx5 and Msx2 are able to form a heterodimer, and together can regulate embryonic development including skeletogenesis. Dlx5 functions as a transcriptional activator and Msx2 a transcriptional repressor, and they share common target genes. During mouse digit development, the expression domains of Dlx5 and Msx2 overlap at the distal region of the developing terminal phalange, although digit formation and regeneration are not altered in the Dlx5 and Msx2 null mutant embryos. Interestingly, we observed a high rate of defects in neural tube formation in Dlx5 and Msx2 double null mutants. In the absence of both Dlx5 and Msx2, a high occurrence of exencephaly and severe defects in craniofacial morphology are observed. Additionally, Dlx5 and Msx2 expression domain analysis showed overlap of the genes at the apex of the neural folds just prior to neural fold fusion. The expression patterns of ephrinA5 and two isoforms of EphA7 were tested as downstream targets of Dlx5 and Msx2. Results show that EphrinA5 and the truncated isoform of EphA7 are regulated by Dlx5 and Msx2 together, although the full length isoform of EphA7 expression is not altered. Overall, these data show that Dlx5 and Msx2 play a critical role in controlling cranial neural tube morphogenesis by regulating cell adhesion via the ephrinA5 and EphA7 pathway.


Asunto(s)
Efrina-A5/metabolismo , Proteínas de Homeodominio/metabolismo , Receptor EphA7/metabolismo , Animales , Efrina-A5/genética , Proteínas de Homeodominio/genética , Hibridación in Situ , Ratones , Ratones Mutantes , Tubo Neural , Receptor EphA7/genética
18.
Dev Biol ; 350(2): 301-10, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21145316

RESUMEN

Amputation of the distal region of the terminal phalanx of mice causes an initial wound healing response followed by blastema formation and the regeneration of the digit tip. Thus far, most regeneration studies have focused in embryonic or neonatal models and few studies have examined adult digit regeneration. Here we report on studies that include morphological, immunohistological, and volumetric analyses of adult digit regeneration stages. The regenerated digit is grossly similar to the original, but is not a perfect replacement. Re-differentiation of the digit tip occurs by intramembranous ossification forming a trabecular bone network that replaces the amputated cortical bone. The digit blastema is comprised of proliferating cells that express vimentin, a general mesenchymal marker, and by comparison to mature tissues, contains fewer endothelial cells indicative of reduced vascularity. The majority of blastemal cells expressing the stem cell marker SCA-1, also co-express the endothelial marker CD31, suggesting the presence of endothelial progenitor cells. Epidermal closure during wound healing is very slow and is characterized by a failure of the wound epidermis to close across amputated bone. Instead, the wound healing phase is associated with an osteoclast response that degrades the stump bone allowing the wound epidermis to undercut the distal bone resulting in a novel re-amputation response. Thus, the regeneration process initiates from a level that is proximal to the original plane of amputation.


Asunto(s)
Extremidades/fisiología , Regeneración , Cicatrización de Heridas , Amputación Quirúrgica , Animales , Antígenos Ly/análisis , Diferenciación Celular , Femenino , Proteínas de la Membrana/análisis , Ratones , Osteoclastos/fisiología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Tomografía Computarizada por Rayos X
19.
PLoS One ; 17(6): e0269571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35679245

RESUMEN

The dog is an underrepresented large animal translational model for orthopedic cell-based tissue engineering. While chondrogenic differentiation of canine multipotent stromal cells (cMSCs) has been reported using the classic micromass technique, cMSCs respond inconsistently to this method. The objectives of this study were to develop a three-dimensional (3D), serum-free, Collagen Type I system to facilitate cMSC chondrogenesis and, once established, to determine the effect of chondrogenic growth factors on cMSC chondrogenesis. Canine MSCs were polymerized in 100 µL Collagen Type I gels (5 mg/mL) at 1 x 106 cells/construct. Constructs were assessed using morphometry, live/dead staining, and histology in 10 various chondrogenic media. Four media were selected for additional in-depth analyses via lactate dehydrogenase release, total glycosaminoglycan content, qPCR (COL1A1, COL2A, SOX9, ACAN, BGLAP and SP7), immunofluorescence, and TUNEL staining. In the presence of dexamethasone and transforming growth factor-ß3 (TGF-ß3), both bone morphogenic protein-2 (BMP-2) and basic fibroblast growth factor (bFGF) generated larger chondrogenic constructs, although BMP-2 was required to achieve histologic characteristics of chondrocytes. Chondrogenic medium containing dexamethasone, TGF-ß3, BMP-2 and bFGF led to a significant decrease in lactate dehydrogenase release at day 3 and glycosaminoglycan content was significantly increased in these constructs at day 3, 10, and 21. Both osteogenic and chondrogenic transcripts were induced in response to dexamethasone, TGF-ß3, BMP-2 and bFGF. Collagen Type II and X were detected in all groups via immunofluorescence. Finally, TUNEL staining was positive in constructs lacking BMP-2 or bFGF. In conclusion, the 3D, serum-free, Collagen Type-I assay described herein proved useful in assessing cMSC differentiation and will serve as a productive system to characterize cMSCs or to fabricate tissue engineering constructs for clinical use.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas , Animales , Médula Ósea/metabolismo , Diferenciación Celular , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis/fisiología , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Dexametasona/farmacología , Perros , Glicosaminoglicanos/metabolismo , Lactato Deshidrogenasas , Factor de Crecimiento Transformador beta3/farmacología
20.
J Bone Miner Res ; 37(2): 312-322, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783092

RESUMEN

Amputation of the mouse digit tip results in blastema-mediated regeneration. In this model, new bone regenerates de novo to lengthen the amputated stump bone, resulting in a functional replacement of the terminal phalangeal element along with associated non-skeletal tissues. Physiological examples of bone repair, such as distraction osteogenesis and fracture repair, are well known to require mechanical loading. However, the role of mechanical loading during mammalian digit tip regeneration is unknown. In this study, we demonstrate that reducing mechanical loading inhibits blastema formation by attenuating bone resorption and wound closure, resulting in the complete inhibition of digit regeneration. Mechanical unloading effects on wound healing and regeneration are completely reversible when mechanical loading is restored. Mechanical unloading after blastema formation results in a reduced rate of de novo bone formation, demonstrating mechanical load dependence of the bone regenerative response. Moreover, enhancing the wound-healing response of mechanically unloaded digits with the cyanoacrylate tissue adhesive Dermabond improves wound closure and partially rescues digit tip regeneration. Taken together, these results demonstrate that mammalian digit tip regeneration is mechanical load-dependent. Given that human fingertip regeneration shares many characteristics with the mouse digit tip, these results identify mechanical load as a previously unappreciated requirement for de novo bone regeneration in humans. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteogénesis , Cicatrización de Heridas , Amputación Quirúrgica , Animales , Regeneración Ósea/fisiología , Huesos , Ratones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda