RESUMEN
Micro-sized plastics were first examined for atmospheric environment in 2016. From then on, they have been detected in both indoor and outdoor atmospheric samples, with indoor environments demonstrated as containing a big proportion of these particles. The sparse distribution of these particles, is attributed to their swift and long distance transportation that is mainly eased by their tiny size (1 µm to 5 mm) and low density. Due to ongoing limitation on detectable size, analysis methods together with a lack of standardized sampling and analytical procedures, few studies were conducted on airborne microplastics (MPs). Thus, the facts regarding the occurrence, global spatial distribution, fate, and threats to ecosystem and human health of airborne MPs, are still far from being fully clarified. This literature review is a broad depiction of a state of knowledge on atmospheric MPs. Within it, robust and concise information on the sources, inspection, transport, and threats pertaining to airborne MPs are presented. Particularly, the paper entails some information concerning traffic-generated MPs pollution, which has not been frequently discussed within previously published reports. In addition, this paper has widely unveiled sectors and aspects in need of further attention, with the gaps to be filled pinpointed.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente/métodos , Humanos , Fisiognomía , Plásticos , Contaminantes Químicos del Agua/análisisRESUMEN
Urban areas are the hardest hit by microplastic pollution, and deposition is an important part of microplastic migration and transport in the atmosphere, therefore, the study of microplastics in an urban atmospheric deposition is of great significance. This study aims to investigate the deposition characteristics of atmospheric microplastics in megapolis, to clarify the influence of meteorological and anthropogenic factors, and to analyze the sources of atmospheric microplastics. Six sampling sites in Shanghai were selected to collect atmospheric deposition samples during the rainy season. The mean deposition flux of microplastics was 3261.22 ± 2847.99 P·m-2·d-1 (median: 2559.70 P·m-2·d-1), and the types were mainly polyamide (PA, 27.79 %), polyethylene terephthalate (PET, 27.29 %), polypropylene (PP, 16.95 %), and polyvinyl fluoride (PVF, 12.88 %). The microplastic with the particle size of <1000 µm accounted for 88.23 %, and the shape was mainly fiber (73.55 %). The results of correlation analysis and variance analysis of microplastic characteristics with meteorological and anthropogenic factors (land-use, atmospheric pollutants, and urban indicators) showed that wind and precipitation had effects on deposition flux, size and shape, and were more significant at small scales (individual cities), while at large scales, the population was the main influence of microplastics. Atmospheric microplastics in Shanghai may be dominated by exogenous sources, through a combination of microplastic characteristics, wind and backward trajectories. This study further reveals the fate of urban atmospheric microplastics, which has implications for the study of global microplastic pollution.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Microplásticos , Nylons , Plásticos/análisis , Tereftalatos Polietilenos , Polipropilenos/análisis , Estaciones del Año , Contaminantes Químicos del Agua/análisisRESUMEN
Significant endeavors have been devoted in the past few years to establish efficient visible light-activated photocatalysts. Herein, we successfully synthesized a flower-like hierarchical nitrogen-doped and carbon-sensitized Nb2O5 (NBO) nanostructure (denoted N-NBO/C). The as-prepared N-NBO/C possessed a specific surface area of 260.37 m2 g-1 and single wire diameter of less than 10 nm. The effect of reaction parameters such as hydrothermal reaction time, temperature and concentration of hexamethylenetetramine (Hmta) on the morphology of NBO was systematically investigated to elucidate the growth mechanism. The carbon on the surface and the nitrogen in the framework of NBO are beneficial for light harvesting, visible light absorption, formation of oxygen vacancies, and electron-hole separation. The photocatalytic performance of the as-fabricated N-NBO/C nanostructures was estimated via the photodegradation of 30 mg L-1 RhB, where greater than 98% of RhB was decomposed within 30 min upon visible-light radiation. Hence, the obtained N-NBO/C nanostructure exhibits much higher photocatalytic activity for the decomposition of RhB upon visible light irradiation than that of pure niobium oxide (NBO), nitrogen-doped titanium oxide (N-TIO), and nitrogen-doped niobium oxide (N-NBO). This work supplies a versatile route for the synthesis of nitrogen-doped and carbon-sensitized metal-oxide nanostructures for possible utilization in solar energy transformation and environmental remediation.