Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Annu Rev Microbiol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985972

RESUMEN

The bacterial chemotaxis system is one of the best-understood cellular pathways and serves as the model for signal transduction systems. Most chemotaxis research has been conducted with transmembrane chemotaxis systems from Escherichia coli and has established paradigms of the system that were thought to be universal. However, emerging research has revealed that many bacteria possess alternative features of their chemotaxis system, demonstrating that these systems are likely more complex than previously assumed. Here, we compare the canonical chemotaxis system of E. coli with systems that diverge in supramolecular architecture, sensory mechanisms, and protein composition. The alternative features have likely evolved to accommodate chemical specificities of natural niches and cell morphologies. Collectively, these studies demonstrate that bacterial chemotaxis systems are a rapidly expanding field that offers many new opportunities to explore this exceedingly diverse system.

2.
mBio ; 14(5): e0159823, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37607060

RESUMEN

IMPORTANCE: A new class of bacterial protein sensors monitors intracellular levels of S-adenosylmethionine to modulate cell morphology, chemotaxis, and biofilm formation. Simultaneous regulation of these behaviors enables bacterial pathogens to survive within their niche. This sensor, exemplified by Treponema denticola CheWS, is anchored to the chemotaxis array and its sensor domain is located below the chemotaxis rings. This position may allow the sensor to directly interact with the chemotaxis histidine kinase CheA. Collectively, these data establish a critical role of CheWS in pathogenesis and further illustrate the impact of studying non-canonical chemotaxis proteins.


Asunto(s)
Quimiotaxis , Proteínas de Escherichia coli , Quimiotaxis/fisiología , Spirochaetales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Bacterias/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo
3.
Trends Microbiol ; 29(6): 542-550, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33160853

RESUMEN

Motility allows many microbes to traverse their environment to find nutrient sources or escape unfavorable environments. However, some microbes are nonmotile and are restricted to their immediate conditions. Intriguingly, sporadic reports have demonstrated that many nonmotile microbes can utilize the motility machinery of other microbes in their vicinity. This form of transportation, called hitchhiking, has been observed with both prokaryotic and eukaryotic microbes. Importantly, many hitchhiking microbes are pathogenic to humans or plants. Here, we discuss reports of intermicrobial hitchhiking to generate a comprehensive view of hitchhiking mechanisms and how such interactions may influence human and plant health. We hypothesize that microbial hitchhiking is ubiquitous in nature and may become the subject of an independent subfield of research in microbiology.


Asunto(s)
Bacterias/metabolismo , Interacciones Huésped-Patógeno , Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Humanos , Movimiento , Plantas/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda