Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Lipids Health Dis ; 17(1): 23, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402275

RESUMEN

BACKGROUND: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP). METHODS: Two groups of adult Wistar rats were used, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half of the rats were gavage-fed with a single dose of BCP (40 mg/per rat in 300 µl of sunflower oil as vehicle), while the second half were pre-treated with the vehicle alone. HPLC, Western Blot and immunohistochemistry were used to analyze cerebral cortex and plasma. RESULTS: After BCCAO/R, BCP prevented the increase of lipoperoxides occurring in the vehicle-treated rats in both cerebral cortex and plasma. In the frontal cortex, BCP further prevented activation of the endocannabinoid system (ECS), spared the docosahexaenoic acid (DHA), appeared to prevent the increase of cyclooxygenase-2 and increased the peroxisome-proliferator activated receptor-alpha (PPAR-alpha) protein levels, while, in plasma, BCP induced the reduction of arachidonoylethanolamide (AEA) levels as compared to vehicle-treated rats. CONCLUSIONS: Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Endocannabinoides/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Sesquiterpenos/administración & dosificación , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Enfermedades de las Arterias Carótidas/tratamiento farmacológico , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Arteria Carótida Común/metabolismo , Arteria Carótida Común/patología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/patología , Hipocampo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Estrés Oxidativo/efectos de los fármacos , Sesquiterpenos Policíclicos , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
2.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385102

RESUMEN

This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT) in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R) and to investigate RVT's ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle), while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1) and 2 (CB2), and peroxisome-proliferator-activated-receptor (PPAR)-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.


Asunto(s)
Enfermedades de las Arterias Carótidas , Lóbulo Frontal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptores de Cannabinoides/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Estilbenos/farmacología , Animales , Arteriopatías Oclusivas , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica , Masculino , Ratas , Ratas Wistar , Receptores de Cannabinoides/genética , Daño por Reperfusión/metabolismo , Resveratrol , Estilbenos/uso terapéutico
3.
Lipids Health Dis ; 16(1): 14, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103941

RESUMEN

BACKGROUND: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. METHODS: Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. RESULTS: The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. CONCLUSIONS: The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge.


Asunto(s)
Isquemia Encefálica/metabolismo , Trastornos Cerebrovasculares/metabolismo , Endocannabinoides/metabolismo , Peróxidos Lipídicos/metabolismo , Daño por Reperfusión/metabolismo , Amidas , Animales , Ácidos Araquidónicos/metabolismo , Isquemia Encefálica/fisiopatología , Arteria Carótida Común/cirugía , Trastornos Cerebrovasculares/fisiopatología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Etanolaminas/metabolismo , Lóbulo Frontal/metabolismo , Lóbulo Frontal/fisiopatología , Regulación de la Expresión Génica , Glicéridos/metabolismo , Peroxidación de Lípido , Masculino , Lóbulo Occipital/metabolismo , Lóbulo Occipital/fisiopatología , Estrés Oxidativo , PPAR alfa/genética , PPAR alfa/metabolismo , Ácidos Palmíticos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/fisiopatología , Lóbulo Temporal/metabolismo , Lóbulo Temporal/fisiopatología
4.
Arch Physiol Biochem ; 124(2): 97-108, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28835131

RESUMEN

Regulation of the expression of GPCR fatty acid receptor genes has been examined in human adipocytes differentiated in culture. TNFα and IL-1ß induced a marked reduction in GPR120 expression, mRNA level falling 17-fold at 24 h in adipocytes incubated with TNFα. In contrast, GPR84 mRNA was dramatically increased by these cytokines (>500-fold for IL-1ß at 4 h); GPR41 expression was also stimulated. Rosiglitazone did not affect GPR84 expression, but GPR120 and GPR41 expression increased. Dexamethasone, insulin, linoleic and docosahexaenoic acids (DHA), and TUG891 (GPR120 agonist) had little effect on GPR120 and GPR84 expression. TUG891 did not attenuate the pro-inflammatory actions of TNFα and IL-1ß. DHA slightly countered the actions of IL-1ß on CCL2, IL6 and ADIPOQ expression, though not on secretion of these adipokines. GPR120 and GP84 gene expression in human adipocytes is highly sensitive to pro-inflammatory mediators; the inflammation-induced inhibition of GPR120 expression may compromise the anti-inflammatory action of GPR120 agonists.


Asunto(s)
Citocinas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Regulación de la Expresión Génica , Receptores de Superficie Celular/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Grasa Subcutánea/metabolismo , Adulto , Antiinflamatorios/farmacología , Compuestos de Bifenilo/farmacología , Células Cultivadas , Citocinas/genética , Dexametasona/farmacología , Ácidos Docosahexaenoicos/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ácido Linoleico/metabolismo , Persona de Mediana Edad , Fenilpropionatos/farmacología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/metabolismo , Rosiglitazona , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/inmunología , Tiazolidinedionas/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Neuropharmacology ; 133: 242-253, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407214

RESUMEN

We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders.


Asunto(s)
Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Aislamiento Social , Hormona Adrenocorticotrópica/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Corticosterona/metabolismo , Electrochoque/efectos adversos , Endocannabinoides/metabolismo , Pie/inervación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Antagonistas de Hormonas/administración & dosificación , Masculino , Mifepristona/administración & dosificación , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/metabolismo , Estrés Psicológico/patología , Factores de Tiempo
6.
Front Physiol ; 9: 1969, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30705640

RESUMEN

Milk and dairy products are relevant components of daily diet and are part of dietary recommendation in many countries due to their content of key nutrients. However, the relatively high content of saturated fat of the milk and its extensive usage for every age group raises concerns about its potential negative health effects. Therefore, in the last years, several researchers dedicated their attention to milk production and quality. Milk fatty acids profile depend on cow feeding and in particular on the type of forage and concentrate and forage/concentrate ratio. It was demonstrated that feeding dairy cows with a 70/30 forage/concentrate ratio yields milk with a low ω6:ω3 ratio and high CLA levels. In this work, we demonstrated that the supplementation of rats diet with this high forage milk (HFM) results, in the skeletal muscle of these animals, in a reduced lipid content and inflammation levels, and an improved mitochondrial lipid oxidation, and redox status through modulation of AMPK activity.

7.
Front Physiol ; 9: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472867

RESUMEN

Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle.

8.
Sci Rep ; 7(1): 1361, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28465539

RESUMEN

Reduced taste sensitivity to 6-n-propylthiouracil (PROP), a genetic trait regarded as a general index for oral chemosensory perception, has been associated with a calorie-rich food preference and lower circulating endocannabinoid levels in participants with normal weight (NW), which suggests an adaptive mechanism to maintain a lean phenotype. In this study, we assessed whether participants with obesity (OB) show different patterns of plasma endocannabinoids and lipid metabolism biomarkers from those of NW, with further categorization based on their PROP sensitivity. NW and OB were classified by their PROP taster status as non-tasters (NT), medium-tasters (MT) and supertasters (ST). The blood samples were analysed for plasma endocannabinoids, nonesterified fatty acids (NEFA) and retinol, which have been associated to metabolic syndrome. In OB, we found a higher BMI and lower circulating endocannabinoids in ST vs. OB NT. However, OB ST showed lower circulating NEFA and retinol levels, which suggested a more favourable lipid metabolism and body fat distribution than those of OB NT. We confirmed lower plasma endocannabinoid levels in NW NT than in NW ST. These data suggest that PROP taste sensitivity determines metabolic changes and ultimately body mass composition differently in OB and NW.


Asunto(s)
Índice de Masa Corporal , Endocannabinoides/sangre , Obesidad/sangre , Obesidad/psicología , Propiltiouracilo/administración & dosificación , Gusto , Adulto , Peso Corporal , Eritrocitos/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda