RESUMEN
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS); its cause is unknown. To understand the pathogenesis of MS, researchers often use the experimental autoimmune encephalomyelitis (EAE) mouse model. Here, the aim is to build a proteome map of the biological changes that occur during MS at the major onset sites-the brain and the spinal cord. Quantitative proteome profiling is performed in five specific brain regions and the spinal cord of EAE and healthy mice with high-resolution mass spectrometry based on tandem mass tags. On average, 7400 proteins per region are quantified, with the most differentially expressed proteins in the spinal cord (1691), hippocampus (104), frontal cortex (83), cerebellum (63), brainstem (50), and caudate nucleus (41). Moreover, region-specific and commonly expressed proteins in each region are identified and bioinformatics analysis is performed. Pathway analysis reveals that protein clusters resemble their functions in disease pathogenesis (i.e., by inducing inflammatory responses, immune activation, and cell-cell adhesion). In conclusion, the study provides an understanding of the pathogenesis of MS in the EAE animal model. It is expected that the comprehensive proteome map of the brain and spinal cord can be used to identify biomarkers for the pathogenesis of MS.
Asunto(s)
Encéfalo/patología , Encefalomielitis Autoinmune Experimental/patología , Proteoma/análisis , Médula Espinal/patología , Animales , Química Encefálica , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Proteómica/métodos , Médula Espinal/químicaRESUMEN
BACKGROUND: TB-500 (Ac-LKKTETQ), derived from the active site of thymosin ß4 (Tß4), has various biological functions in its unacetylated form, LKKTETQ. These functions include actin binding, dermal wound healing, angiogenesis, and skin repair. The biological effects of TB-500, however, have not been documented. And the analysis of TB-500 and its metabolites have been neither simultaneously quantified nor structurally identified using synthesized authentic standards. METHODS: This study was aimed to investigating simultaneous analytical methods of TB-500 and its metabolites in in-vitro and urine samples by using UHPLC-Q-Exactive orbitrap MS, and to comparing the biological activity of its metabolites with the parent TB-500. The metabolism of TB-500 was investigated in human serum, various in-vitro enzyme systems, and urine samples from rats treated with TB-500, and their biological activities measured by cytotoxicity and wound healing experiments were also evaluated in fibroblasts. RESULTS: The simultaneous analytical method for TB-500 and its metabolites was developed and validated. The study found that Ac-LK was the primary metabolite with the highest concentration in rats at 0-6 h intervals. Also, the metabolite Ac-LKK was a long-term metabolite of TB-500 detected up to 72 hr. No cytotoxicity of the parent and its metabolites was found. Ac-LKKTE only showed a significant wound healing activity compared to the control. CONCLUSION: The study provides a valuable tool for quantifying TB-500 and its metabolites, contributing to the understanding of metabolism and potential therapeutic applications. Our results also suggest that the previously reported wound-healing activity of TB-500 in literature may be due to its metabolite Ac-LKKTE rather than the parent form.
Asunto(s)
Espectrometría de Masas en Tándem , Cicatrización de Heridas , Ratas , Humanos , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodosRESUMEN
Bolasterone (7α,17α-dimethyltestosterone) and anabolic androgenic steroids are included in the World Anti-Doping Agency's Prohibited list of substances. This study aimed to evaluate the metabolism of bolasterone through in vitro experiments using rat liver microsomes and in vivo experiments using rat urine after oral administration. Urine samples were collected over a 168-h period. Bolasterone and its metabolites were detected by liquid chromatography coupled with a Q-Exactive Obitrap mass spectrometry (LC-HRMS). Ultimately 16 hydroxylated metabolites (M1-M16), one metabolite from the reduction of the 3-keto function and 4-ene (M17), and one glucuronic acid conjugated metabolite (M18) were detected. Metabolites M17 and M18 were confirmed by comparison with available reference or authentic standards. Metabolic modifications in the structure of the parent bolasterone result in different fragmentation patterns. Based on the sensitivity of the HRMS data, characteristic ions such as m/z 121.064 (C8 H9 O) generated from ring A of the mono-hydroxylated metabolites and 121.101 (C9 H13 ) generated from ring D of the di-hydroxylated metabolites were observed that helped differentiate between the obtained metabolites. The structures of fragment ions were tentatively proposed based on their fragmentation pathways, where the significant ions were correlated to the possible structural fragments. In conclusion, new metabolites of bolasterone were detected and characterized by the use of the full-scan and dd-MS/MS using LC-HRMS, and this data can be useful for providing metabolite information for the interpretation of mass spectra of anabolic bolasterone analogues for doping screening tests.
Asunto(s)
Anabolizantes , Esteroides Anabólicos Androgénicos , Animales , Ratas , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Microsomas Hepáticos/metabolismo , Iones , Anabolizantes/análisisRESUMEN
Thymosin ß4 (Tß4) was reported to exert various beneficial bioactivities such as tissue repair, anti-inflammation, and reduced scar formation, and it is listed on the prohibited substances in sports by the World Anti-Doping Agency. However, no metabolism studies of Tß4 were reported yet. Previously, our lab reported in in vitro experiment that a total of 13 metabolites were found by using multiple enzymes, and six metabolites (Ac-Tß31-43 , Ac-Tß17-43 , Ac-Tß1-11 , Ac-Tß1-14 , Ac-Tß1-15 , and Ac-Tß1-17 ) were confirmed by comparing with the synthetic standards. This study was aimed at identifying new metabolites of Tß4 leucine aminopeptidase (LAP), human kidney microsomes (HKM), cultured huvec cells, and rats after administration of Tß4 protein to develop biomarkers for detecting doping drugs in sports. A method for detecting and quantifying Ac-Tß1-14 was developed and validated using Q-Exactive orbitrap mass spectrometry. The limit of detection (LOD) and limit of quantification (LOQ) of the Ac-Tß1-14 were 0.19 and 0.58 ng/mL, respectively, and showed a good linearity (r2 = 0.9998). As a result, among the six metabolites above, Ac-Tß1-14 , as a common metabolite, was found in LAP, HKM, huvec cells exposed to Tß4, and the urine of rats intraperitoneally treated with 20-mg/kg Tß4. And the metabolite Ac-Tß1-14 was quantitatively determined by 48 h in rats, with the highest concentration occurring between 0 and 6 h. Ac-Tß1-14 was not detected in non-treated control groups, including human blank urine. These results suggest that Ac-Tß1-14 in urine is a potential biomarker for screening the parent Tß4 in doping tests.
Asunto(s)
Líquidos Corporales , Doping en los Deportes , Timosina , Ratas , Humanos , Animales , Riñón , Timosina/metabolismo , Timosina/uso terapéutico , Líquidos Corporales/metabolismoRESUMEN
Blood transfusion is performed by cheating athletes to rapidly increase oxygen delivery to exercise muscles and enhance their performance. This method is banned by the World Anti-doping Agency (WADA). Heterologous or allogenic blood transfusion happens when blood from a different person is transfused. The method used to detect this type of doping is based on flow cytometry, by identifying variations in blood group minor antigens present on the red blood cells' surface. Transfusion practices have regained interest since the introduction of human recombinant erythropoietin detection method. It has been reported that the number of occurrences of two athletes sharing an identical phenotype in the same sport was five times higher than the theoretical populational probability. The present work describes the prevalence of 10 erythrocytes surface antigens in a population of 261 athletes from all five continents. The matching phenotype per sport is also described.