Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Med Intensiva ; 36(4): 294-306, 2012 May.
Artículo en Español | MEDLINE | ID: mdl-22014424

RESUMEN

Mechanical ventilation is a therapeutic intervention involving the temporary replacement of ventilatory function with the purpose of improving symptoms in patients with acute respiratory failure. Technological advances have facilitated the development of sophisticated ventilators for viewing and recording the respiratory waveforms, which are a valuable source of information for the clinician. The correct interpretation of these curves is crucial for the correct diagnosis and early detection of anomalies, and for understanding physiological aspects related to mechanical ventilation and patient-ventilator interaction. The present study offers a guide for the interpretation of the airway pressure and flow and volume curves of the ventilator, through the analysis of different clinical scenarios.


Asunto(s)
Respiración Artificial , Insuficiencia Respiratoria/fisiopatología , Insuficiencia Respiratoria/terapia , Enfermedad Aguda , Humanos , Respiración
2.
Intensive Care Med ; 27(12): 1931-6, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11797030

RESUMEN

OBJECTIVES: (1) To demonstrate that metabolic parameters are better indicators of tissue hypoxia than regional and whole oxygen consumption (VO(2)). (2) To compare intramucosal pH (pHi) in different gastrointestinal segments. DESIGN: Prospective, interventional study. SETTING: Research laboratory at a university center. SUBJECTS: Fourteen anesthetized, mechanically ventilated dogs. INTERVENTIONS: Twenty milliliters per kilogram bleeding. MEASUREMENTS AND MAIN RESULTS: We placed pulmonary, aortic and mesenteric venous catheters, and an electromagnetic flow probe in the superior mesenteric artery, and gastric, jejunal and ileal tonometers to measure flows, arterial and venous blood gases and lactate, and intramucosal PCO(2). We calculated systemic and intestinal oxygen transport (DO(2)) and consumption (VO(2)), pHi and arterial minus intramucosal PCO(2) (DeltaPCO(2)). Then, we bled the dogs and repeated the measurements after 30 min. Systemic and intestinal DO(2) fell (26.0+/-7.3 versus 8.9+/-2.6 and 71.9+/-17.3 versus 24.6+/-9.6 ml/min per kg, respectively, p<0.0001). Systemic and intestinal VO(2) remained unchanged (5.5+/-1.3 versus 5.4+/-1.3 and 15.7+/-5.0 versus 14.9+/-5.3 ml/min per kg, respectively). Gastric, jejunal and ileal pHi (7.13+/-0.11 versus 6.96+/-0.17, 7.18+/-0.06 versus 6.97+/-0.15, 7.12+/-0.11 versus 6.94+/-0.14, p<0.05) and DeltaPCO(2) (21+/-13 versus 35+/-23, 15+/-5 versus 33+/-16, 23+/-17 versus 38+/-20, p<0.05) changed accordingly. Arterial and mesenteric venous lactate and their difference, rose significantly (1.7+/-0.9 versus 3.7+/-1.4 and 1.8+/-0.8 versus 4.3+/-1.5 mmol/l, 0.1+/-0.6 versus 0.6+/-0.7 mmol/l, p<0.05). CONCLUSIONS: During hemorrhage, systemic and intestinal VO(2) remained stable. However, hyperlactatemia and intramucosal acidosis evidenced anaerobic metabolism. pHi changes paralleled in the three intestinal segments.


Asunto(s)
Mucosa Gástrica/metabolismo , Mucosa Intestinal/metabolismo , Oxígeno/metabolismo , Choque Hemorrágico/metabolismo , Análisis de Varianza , Animales , Dióxido de Carbono/sangre , Perros , Mucosa Gástrica/irrigación sanguínea , Hemodinámica , Concentración de Iones de Hidrógeno , Íleon/metabolismo , Mucosa Intestinal/irrigación sanguínea , Yeyuno/metabolismo , Ácido Láctico/sangre , Presión Parcial , Estudios Prospectivos , Choque Hemorrágico/complicaciones , Circulación Esplácnica
3.
Intensive Care Med ; 26(11): 1619-23, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11193267

RESUMEN

OBJECTIVES: To examine the relationship between end-tidal CO2 (PETCO2) and its physiological determinants, pulmonary blood flow (cardiac output, CO) and CO2 production (VCO2), in a model of hemorrhagic shock during fixed minute ventilation. DESIGN AND SETTING: Prospective, observational study in a research laboratory at a university center. SUBJECTS AND INTERVENTIONS: Six anesthetized, intubated, and mechanically ventilated mongrel dogs. Progressive stepwise bleeding. MEASUREMENTS AND RESULTS: We continuously measured PETCO2 with a capnograph, pulmonary artery blood flow with an electromagnetic flow probe, arterial oxygen saturation (SaO2) with a fiberoptic catheter, and oxygen consumption (VO2) and VCO2 by expired gases analysis. Oxygen delivery (DO2) was continuously calculated from pulmonary blood flow and SaO2. We studied the correlation of PETCO2 with CO and VCO2 in each individual experiment. We also calculated the critical point in the relationships PETCO2/ DO2 and VO2/DO2 by the polynomial method. As expected, PETCO2 was correlated with CO. The best fit was logarithmic in all experiments (median r2 = 0.90), showing that PETCO2 decrease is greater in lowest flow states. PETCO2 was correlated with VCO2, but the best fit was linear (median r2 = 0.77). Critical DO2 for PETCO2 and VO2 was 8.0 +/- 3.3 and 6.3 +/- 2.5 ml x min(-1) kg(-1), respectively (NS). CONCLUSIONS: Our data reconfirm the relationship between PETCO2 and CO during hemorrhagic shock. The relatively greater decrease in PETCO2 at lowest CO levels could represent diminished CO2 production during the period of VO2 supply dependency.


Asunto(s)
Capnografía/métodos , Dióxido de Carbono/metabolismo , Gasto Cardíaco , Mecánica Respiratoria , Choque Hemorrágico/fisiopatología , Animales , Velocidad del Flujo Sanguíneo , Perros , Estudios Prospectivos , Arteria Pulmonar , Respiración Artificial , Estadísticas no Paramétricas
4.
Minerva Anestesiol ; 79(4): 434-44, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23254162

RESUMEN

Patient-ventilator dyssynchrony is common during mechanical ventilation. Dyssynchrony decreases comfort, prolongs mechanical ventilation and intensive care unit stays, and might lead to worse outcome. Dyssynchrony can occur during the triggering of the ventilator, the inspiration period after triggering, the transition from inspiration to expiration, and the expiratory phase. The most common dyssynchronies are delayed triggering, autotriggering, ineffective inspiratory efforts (which can occur at any point in the respiratory cycle), mismatch between the patient's and ventilator's inspiratory times, and double triggering. At present, the detection of dyssynchronies usually depends on healthcare staff observing ventilator waveforms; however, performance is suboptimal and many events go undetected. To date, technological complexity has made it impossible to evaluate patient-ventilator synchrony throughout the course of mechanical ventilation. Studies have shown that a high index of dyssynchrony may increase the duration of mechanical ventilation. Better training, better ventilatory modes, and/or computerized systems that permit better synchronization of patients' demands and ventilator outputs are necessary to improve patient-ventilator synchrony.


Asunto(s)
Respiración Artificial/métodos , Ventiladores Mecánicos , Presión del Aire , Falla de Equipo/estadística & datos numéricos , Humanos , Pacientes , Respiración Artificial/efectos adversos , Mecánica Respiratoria/fisiología , Ventiladores Mecánicos/efectos adversos , Trabajo Respiratorio
5.
Med Intensiva ; 34(1): 46-55, 2010.
Artículo en Español | MEDLINE | ID: mdl-19811855

RESUMEN

The Health System is in crisis and critical care (from transport systems to the ICU) cannot escape from that. Lack of integration between ambulances and reference Hospitals, a deep shortage of critical care specialists and assigned economical resources that increase less than critical care demand are the cornerstones of the problem. Moreover, the analysis of the situation anticipated that the problem will be worse in the future. "Closed" ICUs in which critical care specialists direct patient care outperform "open" ones in which primary admitting physicians direct patient care in consultation with critical care specialists. However, the current paradigm in which a critical care specialist is close to the patient is in the edge of the trouble so, only a new paradigm could help to increase the number of patients under intensivist care. Current information technology and networking capabilities should be fully exploited to improve both the extent and quality of intensivist coverage. Far to be a replacement of the existing model Telemedicine might be a complimentary tool. In fact, to centralize medical data into servers has many additional advantages that could even improve the way in which critical care physicians take care of their patients under the traditional system.


Asunto(s)
Cuidados Críticos/métodos , Servicios Médicos de Urgencia/métodos , Medicina de Emergencia/métodos , Unidades de Cuidados Intensivos/organización & administración , Garantía de la Calidad de Atención de Salud , Telemedicina , Alarmas Clínicas , Redes de Comunicación de Computadores/organización & administración , Instrucción por Computador , Costos y Análisis de Costo , Cuidados Críticos/economía , Servicios Médicos de Urgencia/economía , Medicina de Emergencia/economía , Medicina de Emergencia/educación , Predicción , Necesidades y Demandas de Servicios de Salud , Sistemas de Comunicación en Hospital/organización & administración , Humanos , Unidades de Cuidados Intensivos/economía , Monitoreo Fisiológico/economía , Monitoreo Fisiológico/instrumentación , Control de Calidad , España , Telemedicina/economía , Telemedicina/organización & administración , Telemedicina/tendencias , Recursos Humanos
7.
Med. intensiva (Madr., Ed. impr.) ; 36(4): 294-306, mayo 2012. ilus
Artículo en Español | IBECS (España) | ID: ibc-103067

RESUMEN

La ventilación mecánica es una intervención terapéutica de sustitución temporal de la función ventilatoria enfocada a mejorar los síntomas en los pacientes que sufren insuficiencia respiratoria aguda. Los avances tecnológicos han facilitado el desarrollo de ventiladores sofisticados que permiten visualizar y registrar las ondas respiratorias, lo que constituye una fuente de información muy valiosa para el clínico. La correcta interpretación de los trazados es de vital importancia tanto para el correcto diagnóstico como para la detección precoz de anomalías y para comprender aspectos de la fisiología relacionados con la ventilación mecánica y con la interacción paciente-ventilador. El presente trabajo da una orientación de cómo interpretar las curvas del ventilador mediante el análisis de trazados de presión en la vía aérea, flujo aéreo y volumen en distintas situaciones clínicas (AU)


Mechanical ventilation is a therapeutic intervention involving the temporary replacement of ventilatory function with the purpose of improving symptoms inpatients with acute respiratory failure. Technological advances have facilitated the development of sophisticated ventilators for viewing and recording the respiratory waveforms, which are a valuable source of information for the clinician. The correct interpretation of these curves is crucial for the correct diagnosis and early detection of anomalies, and for understanding physiological aspects related to mechanical ventilation and patient-ventilator interaction. The present study offers a guide for the interpretation of the airway pressure and flow and volume curves of the ventilator, through the analysis of different clinical scenarios (AU)


Asunto(s)
Humanos , Ventiladores Mecánicos , Respiración Artificial/métodos , Insuficiencia Respiratoria/terapia , Síndrome Torácico Agudo/terapia , Respiración con Presión Positiva/métodos
8.
Med. intensiva (Madr., Ed. impr.) ; 34(1): 46-55, ene.-feb. 2010.
Artículo en Español | IBECS (España) | ID: ibc-80388

RESUMEN

El sistema asistencial sanitario está en crisis, y los cuidados críticos (desde los sistemas de transporte hasta la unidad de cuidados intensivos [UCI]) no se libran de esta circunstancia. La falta de integración entre la Medicina prehospitalaria y los hospitales receptores, una limitación profunda en el número de especialistas en cuidados críticos y unos recursos económicos que no aumentan a la par del incremento en la demanda de cuidados intensivos son las piedras angulares del problema. Es más, las previsiones de futuro no son alentadoras. Varios estudios demuestran que las UCI «cerradas», en las que un especialista en cuidados intensivos dirige la atención del paciente, tienen mejores resultados que las UCI «abiertas», en las que la atención sigue a cargo de los médicos de atención primaria. Sin embargo, que un especialista en cuidados intensivos se encuentre al lado del paciente es cada vez más complicado; sólo un cambio en la manera de trabajar podría ayudar a incrementar el número de pacientes cuidados por un intensivista. La tecnología de la información y la capacidad de comunicación (transmisión de datos en línea) deberían explotarse al máximo para aumentar tanto la cobertura como la calidad de los cuidados intensivos. Lejos de ser un reemplazo del modelo existente, la telemedicina podría ser la herramienta complementaria que ayudara a mejorar la manera en la que los médicos intensivistas atienden a sus pacientes (AU)


The Health System is in crisis and critical care (from transport systems to the ICU) cannot escape from that. Lack of integration between ambulances and reference Hospitals, a deep shortage of critical care specialists and assigned economical resources that increase less than critical care demand are the cornerstones of the problem. Moreover, the analysis of the situation anticipated that the problem will be worse in the future. «Closed» ICUs in which critical care specialists direct patient care outperform «open» ones in which primary admitting physicians direct patient care in consultation with critical care specialists. However, the current paradigm in which a critical care specialist is close to the patient is in the edge of the trouble so, only a new paradigm could help to increase the number of patients under intensivist care. Current information technology and networking capabilities should be fully exploited to improve both the extent and quality of intensivist coverage. Far to be a replacement of the existing model Telemedicine might be a complimentary tool. In fact, to centralize medical data into servers has many additional advantages that could even improve the way in which critical care physicians take care of their patients under the traditional system (AU)


Asunto(s)
Humanos , Telemedicina , Unidades de Cuidados Intensivos/organización & administración , Telemedicina/economía , Telemedicina/organización & administración , Telemedicina/tendencias , Unidades de Cuidados Intensivos/economía , Monitoreo Fisiológico/economía , Monitoreo Fisiológico/instrumentación , España
9.
Minerva Anestesiol ; 68(5): 351-5, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12029244

RESUMEN

The treatment of unilateral lung injury is supportive. Gas exchange can be improves by positioning the patient with the "good lung down" and applying differential ventilation with selective PEEP in some patients. However, both strategies have serious limitations in clinical practice. Basic research have shown that the application of selective TGI and the combination of selective TGI and PLV permitted a reduction in tidal volume with resultant decrease in airway pressures and improvement in lung compliance, without any adverse effects on CO2 elimination. Experimental models have shown that the use of selective TGI and PLV at low tidal volume is a simple method to provide regional recruitment, enhancing gas exchange while reducing cyclic lung stretch and shear stresses associated with mechanical ventilation. These experimental studies cannot be extrapolated to clinical practice because further studies are needed to determine human applications of these therapies.


Asunto(s)
Enfermedades Pulmonares/terapia , Humanos , Ventilación Liquida , Enfermedades Pulmonares/fisiopatología , Respiración con Presión Positiva , Respiración Artificial , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Tráquea/fisiología
10.
Crit Care Med ; 29(12): 2251-7, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11801817

RESUMEN

OBJECTIVE: During unilateral lung injury, we hypothesized that we can improve global lung function by applying selective tracheal gas insufflation (TGI) and partial liquid ventilation (PLV) to the injured lung. DESIGN: Prospective, interventional animal study. SETTING: Animal laboratory in a university hospital. SUBJECTS: Adult mixed-breed dogs. INTERVENTIONS: In six anesthetized dogs, left saline lung lavage was performed until PaO(2)/FiO(2) fell below 100 torr (13.3 kPa). The dogs were then reintubated with a Univent single-lumen endotracheal tube, which incorporates an internal catheter to provide TGI. In a consecutive manner, we studied 1) the application of 10 cm H(2)O of positive end-expiratory pressure (PEEP); 2) instillation of 10 mL/kg of perflubron (Liquivent) to the left lung at a PEEP level of 10 cm H(2)O (PLV+PEEP 10 initial); 3) application of selective TGI (PLV+TGI) while maintaining end-expiratory lung volume (EELV) constant; 4) PLV+TGI at reduced tidal volume (VT); and 5) PLV+PEEP 10 final. MEASUREMENTS AND MAIN RESULTS: Application of PLV+PEEP 10 initial did not change gas exchange, lung mechanics, or hemodynamics. PLV+TGI improved PaO(2)/FiO(2) from 189 +/- 13 torr (25.2 +/- 1.7 kPa) to 383 +/- 44 torr (51.1 +/- 5.9 kPa) (p <.01) and decreased PaCO(2) from 55 +/- 5 torr (7.3 +/- 0.7 kPa) to 30 +/- 2 torr (4.0 +/- 0.3 kPa) (p <.01). During ventilation with PLV+TGI, reducing VT from 15 mL/kg to 3.5 mL/kg while keeping EELV constant decreased PaO(2)/FiO(2) to 288 +/- 49 torr (38.4 +/- 6.5 kPa) (not significant) and normalized PaCO(2). At this stage, end-inspiratory plateau pressure decreased from 19.2 +/- 0.7 cm H(2)O to 13.6 +/- 0.7 cm H(2)O (p <.01). At PLV+PEEP 10 final, measurements returned to those observed at previous baseline stage (PLV+PEEP 10 initial). CONCLUSIONS: During unilateral lung injury, PLV with a moderate PEEP did not improve oxygenation, TGI superimposed on PLV improved gas exchange, and combination of TGI and PLV allowed a 77% reduction in VT without any adverse effect on PaCO(2).


Asunto(s)
Insuflación/métodos , Ventilación Liquida/métodos , Síndrome de Dificultad Respiratoria/terapia , Animales , Perros , Hemodinámica , Respiración con Presión Positiva/métodos , Mecánica Respiratoria , Irrigación Terapéutica , Tráquea
11.
Am J Respir Crit Care Med ; 161(2 Pt 1): 463-8, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10673186

RESUMEN

To determine if decreased respiratory frequency (ventilatory rate) improves indices of lung damage, 17 sets of isolated, perfused rabbit lungs were ventilated with a peak static airway pressure of 30 cm H(2)O. All lungs were randomized to one of three frequency/peak pulmonary artery pressure combinations: F20P35 (n = 6): ventilatory frequency, 20 breaths/min, and peak pulmonary artery pressure, 35 mm Hg; F3P35 (n = 6), ventilatory frequency, 3 breaths/min, and peak pulmonary artery pressure of 35 mm Hg; or F20P20 (n = 5), ventilatory frequency, 20 breaths/min, and peak pulmonary artery pressure, 20 mm Hg. Mean airway pressure and tidal volume were matched between groups. Mean pulmonary artery pressure and vascular flow were matched between groups F20P35 and F3P35. The F20P35 group showed at least a 4.5-fold greater mean weight gain and a 3-fold greater mean incidence of perivascular hemorrhage than did the comparison groups, all p

Asunto(s)
Lesión Pulmonar , Respiración con Presión Positiva , Ventilación Pulmonar/fisiología , Mecánica Respiratoria/fisiología , Animales , Hemodinámica/fisiología , Hemorragia/patología , Hemorragia/fisiopatología , Presión Hidrostática , Pulmón/patología , Pulmón/fisiopatología , Alveolos Pulmonares/lesiones , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Presión Esfenoidal Pulmonar/fisiología , Conejos , Factores de Riesgo
12.
Am J Respir Crit Care Med ; 164(4): 642-7, 2001 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11520730

RESUMEN

In unilateral lung injury, application of global positive end-expiratory pressure (PEEP) may cause overdistension of normal alveoli and redistribution of blood flow to diseased lung areas, thereby worsening oxygenation. We hypothesized that selective application of tracheal gas insufflation (TGI) will recruit the injured lung without causing overdistension of the normal lung. In eight anesthetized dogs, left lung saline lavage was performed until Pa(O(2))/FI(O(2)) fell below 100 mm Hg. Then, the dogs were reintubated with a Univent single lumen endotracheal tube that incorporates an internal catheter to provide TGI. After injury, increasing PEEP from 3 to 10 cm H(2)O did not change gas exchange, hemodynamics, or lung compliance. Selective TGI, while keeping end-expiratory lung volume (EELV) constant, improved Pa(O(2))/FI(O(2)) from 212 +/- 43 to 301 +/- 38 mm Hg (p < 0.01) while Pa(CO(2)) and airway pressures decreased (p < 0.01). During selective TGI, reducing tidal volume to 5.2 ml/kg while keeping EELV constant, normalized Pa(CO(2)), did not affect Pa(O(2))/FI(O(2)), and decreased end-inspiratory plateau pressure from 16.6 +/- 1.0 to 11.9 +/- 0.5 cm H(2)O (p < 0.01). In unilateral lung injury, we conclude that selective TGI (1) improves oxygenation at a lower pressure cost as compared with conventional mechanical ventilation, (2) allows reduction in tidal volume without a change in alveolar ventilation, and (3) may be a useful adjunct to limit ventilator-associated lung injury.


Asunto(s)
Modelos Animales de Enfermedad , Insuflación/métodos , Terapia por Inhalación de Oxígeno/métodos , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Tráquea , Animales , Análisis de los Gases de la Sangre , Perros , Hemodinámica , Insuflación/instrumentación , Terapia por Inhalación de Oxígeno/instrumentación , Respiración con Presión Positiva/efectos adversos , Respiración con Presión Positiva/instrumentación , Intercambio Gaseoso Pulmonar , Radiografía , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/fisiopatología , Mecánica Respiratoria , Cloruro de Sodio , Irrigación Terapéutica , Volumen de Ventilación Pulmonar
13.
Med. intensiva (Madr., Ed. impr.) ; 29(4): 226-235, mayo 2005. ilus, graf
Artículo en Es | IBECS (España) | ID: ibc-036731

RESUMEN

La presión capilar pulmonar es uno de los determinantes de la formación de edema pulmonar y además favorece el desarrollo de lesión pulmonar inducida por la ventilación mecánica (VILI). En consecuencia, en los enfermos críticos sometidos a ventilación mecánica (VM), la determinación ajustada de la presión capilar cobra mayor relevancia. El flujo vascular también es un factor determinante de la lesión pulmonar aguda, cuyo incremento favorece una mayor lesión pulmonar. El aumento de estas variables fisiológicas determina un incremento del estrés mecánico sobre las células del endotelio capilar pulmonar, lo que puede inducir una respuesta inflamatoria endotelial y favorecer la aparición o el empeoramiento de la lesión pulmonar aguda. En consecuencia, reducir el estrés vascular pulmonar puede disminuir la lesión pulmonar aguda en modelos experimentales


Pulmonary wedge pressure is one of the determinants of pulmonary edema and in addition favors the development of pulmonary injury induced by mechanical ventilation (PIMV). Accordingly, in the critically ill patients subject to mechanical ventilation (MV), the precise determination of pulmonary wedge pressure gain in importance. Vascular flow is also a decisive factor in acute pulmonary injury, and its increase favors a more intense pulmonary injury. The increase of these physiological variables determines an increment in mechanical stress on the cells of pulmonary capillary endothelium, and this stress can induce an endothelial inflammatory response with appearance or worsening of acute pulmonary injury. Accordingly, reducing pulmonary vascular stress can diminish acute lung injury in experimental models


Asunto(s)
Animales , Humanos , Respiración Artificial/efectos adversos , Pulmón/lesiones , Microcirculación/fisiopatología , Estrés Mecánico , Síndrome de Dificultad Respiratoria/fisiopatología , Presión Esfenoidal Pulmonar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda