Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Chemphyschem ; 25(17): e202400450, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38775267

RESUMEN

In this paper we revisit earlier work relating to monoatomic atoms and ions published by pioneers in the area of electrostatic potentials. We include plots of the radial distributions of the electrostatic potentials for spherically symmetric atoms and cations, and for singly, doubly and triply negative anions. For atoms with anisotropy in their densities and electrostatic potentials, such as the halonium cations, it is shown how the molecular surface approach for plotting electrostatic potentials complements that achieved by directional radial distributions.

2.
Phys Chem Chem Phys ; 26(9): 7592-7601, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38362927

RESUMEN

We focus on intramolecular interactions, using the electrostatic potential plotted on iso-density surfaces to lead the way. We show that plotting the electrostatic potential on varying iso-density envelopes much closer to the nuclei than the commonly used 0.001 a.u. contour can reveal the driving forces for such interactions, whether they be stabilizing or destabilizing. Our approach involves optimizing the structures of molecules exhibiting intramolecular interactions and then finding the contour of the electronic density which allows the interacting atoms to be separated; we call this the nearly-touching contour. The electrostatic potential allows then to identify the intramolecular interactions as either attractive or repulsive. The discussed 1,5- and 1,6-intramolecular interactions in o-bromophenol and o-nitrophenol are attractive, while the interactions between terminal methyl hydrogens in diethyl disulfides (as shown recently) and those between the closest hydrogens in planar biphenyl and phenanthrene are clearly repulsive in nature. For the attractive 1,4-interactions in trinitromethane and chlorotrinitromethane, and the 1,3-S⋯N and the 1,4-Si⋯N interactions in the ClH2Si(CH2)nNH2 series, the lack of (3,-1) bond critical points has often been cited as reason to not identify such interactions as attractive in nature. Here, by looking at the nearly-touching contours we see that bond critical points are neither necessary nor sufficient for attractive interactions, as others have pointed out, and in some instances also pointing to repulsive interactions, as the examples of planar biphenyl and phenanthrene discussed in this work show.

3.
Molecules ; 29(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338346

RESUMEN

This paper discusses two quite different computational experiments relating to the formation of σ-hole bonds A···B. The first involves looking at the complex at equilibrium and finding the contour X of the electronic density which allows the iso-density envelopes of A and B to be nearly touching. This contour increases, becoming closer to the nuclei, as the strength of the interaction increases. The second experiment involves allowing A and B to approach each other, with the aim of finding the distance at which their 0.001 a.u. iso-density envelopes are nearly merging into one envelope. What is found in the second experiment may be somewhat surprising, in that the ratio of the distance between interacting atoms at this nearly merging point-divided by the sum of the van der Waals radii of these atoms-covers a narrow range, typically between 1.2 and 1.3. It is intriguing to note that for the dataset presented, approaching molecules attracted to each other appear to do so unknowing of the strength of their ultimate interaction. This second experiment also supports the notion that one should expect favorable interactions, in some instances, to have close contacts significantly greater than the sums of the van der Waals radii.

4.
J Phys Chem A ; 127(40): 8354-8364, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37768140

RESUMEN

For a series of diethyl disulfide conformations, the nearly touching contours of the electrostatic potential plotted on iso-density molecular surfaces allow the assessment of intramolecular repulsion. The electrostatic potential is plotted on varying iso-density envelopes to find the nearly touching contours for which (a) the surface electrostatic potential does not show overlap between atoms or functional groups and (b) the typical features are visible (σ-hole, lone pair, hydrogen VS,max). When these nearly touching contours X are closer to the nuclei, the more electron density is excluded from the iso-density envelopes and the smaller are the volumes corresponding to these envelopes. Both the contours X and the corresponding volumes are found to correlate with relative conformational energy, reflecting the degree of intramolecular repulsion present in the various diethyl disulfides. Quantitative estimates of intramolecular repulsion can be made based on relationships between the nearly touching contour X vs relative energy and volume (of the nearly touching contour X) vs relative energy, obtained for series of diethyl disulfide conformers. These relations were used to analyze intramolecular repulsion in a set of disulfides broader than diethyl disulfide conformers. We have shown that the approach of varying electronic density contours can be used in the study of repulsive intramolecular interactions, hereby extending earlier work involving attractive intermolecular interactions.

5.
Phys Chem Chem Phys ; 24(20): 12116-12120, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35545093

RESUMEN

We address the long-standing controversy as to the physical origin of covalent bonding, whether it involves a lowering of the potential energy or a lowering of the kinetic energy. We conclude that both of these do occur and contribute to the formation of the bond. The analysis is in terms of the virial theorem and the variations in the potential energy and the kinetic energy as the atoms approach each other. At large separations, the change in kinetic energy relative to the separated atoms is negative and stabilizing, while the corresponding potential energy change is positive and destabilizing. However, as the atoms approach their equilibrium separation, these rapidly reverse; the kinetic energy increases and the potential energy decreases, so that at equilibrium the net kinetic energy is positive and the net potential energy negative. At equilibrium, the bonding is due solely to the potential energy and is electrostatic.

6.
Chemphyschem ; 22(12): 1201-1207, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33844430

RESUMEN

We use the term "counter-intuitive" to describe an intermolecular interaction in which the electrostatic potentials of the interacting regions of the ground-state molecules have the same sign, both positive or both negative. In the present work, we consider counter-intuitive halogen bonding with nitrogen bases, in which both the halogen σ-hole and the nitrogen lone pair have negative potentials on their molecular surfaces. We show that these interactions can be treated as Coulombic despite the apparent repulsion between the ground-state molecules, provided that both electrostatics and polarization are explicitly taken into account. We demonstrate first that the energies of 20 counter-intuitive interactions with four nitrogen bases can be expressed very well in terms of just two molecular properties: the electrostatic potential of the halogen σ-hole and the average polarizability of the nitrogen base. Then we show that the same two properties can also represent the energies of an expanded data base that includes the 20 counter-intuitive plus an additional 20 weak and moderately-strong intuitive halogen bonding interactions (in which the σ-hole potentials are now positive).

7.
Phys Chem Chem Phys ; 23(31): 16458-16468, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34286761

RESUMEN

It follows from the Schrödinger equation that the forces operating within molecules and molecular complexes are Coulombic, which necessarily entails both electrostatics and polarization. A common and important class of molecular complexes is due to π-holes. These are molecular regions of low electronic density that are perpendicular to planar portions of the molecular frameworks. π-Holes often have positive electrostatic potentials associated with them, which result in mutually polarizing attractive forces with negative sites such as lone pairs, π electrons or anions. In many molecules, π-holes correspond to a flattening of the electronic density surface but in benzene derivatives and in polyazines the π-holes are craters above and below the rings. The interaction energies of π-hole complexes can be expressed quite well in terms of regression relationships that account for both the electrostatics and the polarization. There is a marked gradation in the interaction energies, from quite weak (about -2 kcal mol-1) to relatively strong (about -40 kcal mol-1). Gradations are also evident in the ratios of the intermolecular separations to the sums of the respective van der Waals radii and in the gradual transition of the π-hole atoms from trigonal to quasi-tetrahedral configurations. These trends are consistent with the concept that chemical interactions form a continuum, from very weak to very strong.

8.
BMC Vet Res ; 17(1): 1, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397375

RESUMEN

BACKGROUND: Despite extensive research, many questions remain unanswered about common problems that impact dog welfare, particularly where there are multiple contributing factors that can occur months or years before the problem becomes apparent. The Generation Pup study is the first longitudinal study of dogs that recruits pure- and mixed-breed puppies, aiming to investigate the relative influence of environmental and genetic factors on a range of health and behaviour outcomes, (including separation related behaviour, aggression to familiar/unfamiliar people or dogs and obesity). This paper describes the study protocol in detail. METHODS: Prior to commencing recruitment of puppies, the study infrastructure was developed, and subject specialists were consulted to inform data collection methodology. Questionnaire content and timepoint(s) for data collection for outcomes and potential predictors were chosen with the aim of providing the best opportunity of achieving the aims of the study, subject to time and funding constraints. Recruitment of puppies (< 16 weeks, or < 21 weeks of age if entering the United Kingdom or Republic of Ireland through quarantine) is underway. By 23 January 2020, 3726 puppies had been registered, with registration continuing until 10,000 puppies are recruited. Data collection encompasses owner-completed questionnaires issued at set timepoints throughout the dog's life, covering aspects such as training, diet, exercise, canine behaviour, preventative health care, clinical signs and veterinary intervention. Owners can elect to submit additional data (health cards completed by veterinary professionals, canine biological samples) and/or provide consent for access to veterinary clinical notes. Incidence and breed associations will be calculated for conditions for which there is currently limited information (e.g. separation related behaviour). Multivariable statistical analysis will be conducted on a range of outcomes that occur throughout different life stages, with the aim of identifying modifiable risk factors that can be used to improve canine health and welfare. DISCUSSION: The Generation Pup project is designed to identify associations between early-life environment, genotypic make-up and outcomes at different life stages. Modifiable risk factors can be used to improve canine health and welfare. Research collaboration with subject specialists is welcomed and already underway within the fields of orthopaedic research, epilepsy, epigenetics and canine impulsivity.


Asunto(s)
Conducta Animal , Enfermedades de los Perros/genética , Bienestar del Animal , Animales , Animales Recién Nacidos , Protocolos Clínicos , Estudios de Cohortes , Enfermedades de los Perros/etiología , Perros , Femenino , Genotipo , Estudios Longitudinales , Masculino , Proyectos de Investigación
9.
Molecules ; 26(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069785

RESUMEN

Since the nuclei in a molecule are treated as stationary, it is perhaps natural that interpretations of molecular properties and reactivity have focused primarily upon the electronic density distribution. The role of the nuclei has generally received little explicit consideration. Our objective has been to at least partially redress this imbalance in emphasis. We discuss a number of examples in which the nuclei play the determining role with respect to molecular properties and reactive behavior. It follows that conventional interpretations based solely upon electronic densities and donating or withdrawing tendencies should be made with caution.

10.
Chemphyschem ; 21(7): 579-588, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-31733136

RESUMEN

The energetics of σ- and π-hole interactions can be described very well in terms of electrostatics and polarization, consistent with their Coulombic natures. When both of these components are taken into account, very good correlations with quantum-chemically computed interaction energies are obtained. If polarization is only minor, as when the interactions are quite weak, then electrostatics can suffice, as represented by the most positive electrostatic potential associated with the σ- or π-hole. For stronger interactions, the combination of electrostatics plus polarization is very effective even for interaction energies considerably greater in magnitude than what is normally considered noncovalent bonding. Several procedures for treating polarization are summarized, including the use of point charges and the direct inclusion of electric fields.

11.
J Phys Chem A ; 123(46): 10123-10130, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31647237

RESUMEN

The interactions between a wide variety of molecules having σ-holes or π-holes and several nitrogen bases have been analyzed computationally. The σ- and π-hole atoms span groups III-VII of the periodic table. The interaction energies range from quite weak, typical of non-covalent bonding, to unusually strong: from -4.6 to -22.0 kcal/mol for σ-hole bonding and from -4.0 to -42.4 kcal/mol for π-hole bonding. The markedly greater strengths of some bonds does not imply that any new factors or types of bonding are involved; they simply reflect higher degrees of the polarization that is part of any Coulombic interaction. To explain the stronger bonding, this polarization must be explicitly taken into account. We show that the interaction energies can be related quite well to (a) the maximum positive electrostatic potentials associated with the σ- or π-holes on their molecular surfaces, (b) the polarizabilities of the nitrogen bases, and especially (c) the polarizing electric fields of the σ- or π-hole molecules at the positions of the nitrogens.

12.
J Chem Educ ; 96(12): 2959-2967, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32051645

RESUMEN

Increasing demand for chemicals worldwide, depleting resources, consumer pressure, stricter legislation, and the rising cost of waste disposal are placing increasing pressure on chemical and related industries. For any organization to survive in the current arena of growing climate change laws and regulations, and increasing public influence, the issue of sustainability must be fundamental to the way it operates. A sustainable manufacturing approach will enable economic growth to be combined with environmental and social sustainability and will be realized via collaboration between a multidisciplinary community including chemists, biologists, engineers, environmental scientists, economists, experts in management, and policy makers. Hence, employees with new skills, knowledge, and experience are essential. To realize this approach, the design and development of a series of workshops encompassing systems thinking are presented here. After close consultation with industry, an annual program of interactive workshops has been designed for graduate students to go beyond examining the "greening" of chemical reactions, processes, and products, and instead embed a systems thinking approach to learning. The workshops provide a valuable insight into the issues surrounding sustainable manufacturing covering change management, commercialization, environmental impact, circular economy, legislation, and bioresources incorporating the conversion of waste into valuable products. The multidisciplinary course content incorporates industrial case studies, providing access to real business issues, and is delivered by experts from academic departments across campus and industry.

13.
J Comput Chem ; 39(9): 464-471, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877367

RESUMEN

σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc.

14.
Chemphyschem ; 19(22): 3044-3049, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30156047

RESUMEN

It is shown that the interactions of dihalogen molecules XY with halide anions Z- to form trihalide anions (XYZ)- can be satisfactorily described as Coulombic, involving the σ-holes on the atoms Y, but only if polarization is taken into account. We have approximated the polarizing effect of the halide anion Z- by means of a unit negative point charge. The CCSD/aug-cc-pVTZ computed interaction energies ΔE correlate well with the most positive electrostatic potentials associated with the induced σ-holes over a ΔE range of -12 to -63 kcal mol-1 . The (XYZ)- anions are more stable when the central atom is the largest, as has been observed, because the central atom is then the most polarizable, making the electrostatic potential associated with its σ-hole more positive.

15.
Org Biomol Chem ; 16(16): 2851-2854, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29630081

RESUMEN

Amide bonds are one of the underpinning linkages in all living systems and are fundamental within drug discovery. Current methods towards their synthesis frequently rely on the use of dipolar aprotic solvents; however, due to increasingly stringent regulations and growing societal pressures, safe and more sustainable alternatives are highly sought after. Herein, we evaluate the application of the bio-based solvent Cyrene™ in the HATU mediated synthesis of amides and peptides. We found that Cyrene functioned as a competent replacement for DMF in the synthesis of a series of lead-like compounds and dipeptides (25 examples, 63-100%).

16.
Phys Chem Chem Phys ; 20(48): 30076-30082, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30484786

RESUMEN

Since quantum mechanical calculations do not typically lend themselves to chemical interpretation, analyses of bonding interactions depend largely upon models (the octet rule, resonance theory, charge transfer, etc.). This sometimes leads to a blurring of the distinction between mathematical modelling and physical reality. The issue of polarization vs. charge transfer is an example; energy decomposition analysis is another. The Hellmann-Feynman theorem at least partially bridges the gap between quantum mechanics and conceptual chemistry. It proceeds rigorously from the Schrödinger equation to demonstrating that the forces exerted upon the nuclei in molecules, complexes, etc., are entirely classically coulombic attractions with the electrons and repulsions with the other nuclei. In this paper, we discuss these issues in the context of noncovalent interactions. These can be fully explained in coulombic terms, electrostatics and polarization (which include electronic correlation and dispersion).

18.
J Comput Chem ; 38(31): 2680-2692, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-28925001

RESUMEN

This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+ , Zn2+ , and Hg2+ . Our results point out that this reaction corresponds to a two-stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to abstract the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.

19.
Faraday Discuss ; 203: 113-130, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28731117

RESUMEN

Close contacts, defined as interatomic separations less than the sum of the respective van der Waals radii, are commonly invoked to identify attractive nonbonded interactions in crystal lattices. While this is often effective, it can also be misleading because (a) there are significant uncertainties associated with van der Waals radii, and (b) it may not be valid to attribute the interactions solely to specific pairs of atoms. The interactions within crystal lattices are Coulombic, and the strongest positive and/or negative regions do not always correspond to the positions of atoms; they are sometimes located between atoms. Examples of both types are given and discussed, focusing in particular upon σ-hole interactions.

20.
Phys Chem Chem Phys ; 19(48): 32166-32178, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29199313

RESUMEN

A covalently-bonded atom typically has a region of lower electronic density, a "σ-hole," on the side of the atom opposite to the bond, along its extension. There is frequently a positive electrostatic potential associated with this region, through which the atom can interact attractively but noncovalently with negative sites. This positive potential reflects not only the lower electronic density of the σ-hole but also contributions from other portions of the molecule. These can significantly influence both the value and also the angular position of the positive potential, causing it to deviate from the extension of the covalent bond. We have surveyed these effects, and their consequences for the directionalities of subsequent noncovalent intermolecular interactions, for atoms of Groups IV-VII. The overall trends are that larger deviations of the positive potential result in less linear intermolecular interactions, while smaller deviations lead to more linear interactions. We find that the deviations of the positive potentials and the nonlinearities of the noncovalent interactions tend to be greatest for atoms of Groups V and VI. We also present arguments supporting the use of the 0.001 a.u. contour of the electronic density as the molecular surface on which to compute the electrostatic potential.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda