Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circulation ; 116(5): 515-25, 2007 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-17646580

RESUMEN

BACKGROUND: Extracellular matrix proteins, such as laminins, and endothelial cells are known to influence cardiomyocyte performance; however, the underlying molecular mechanisms remain poorly understood. METHODS AND RESULTS: We used a forward genetic screen in zebrafish to identify novel genes required for myocardial function and were able to identify the lost-contact (loc) mutant, which encodes a nonsense mutation in the integrin-linked kinase (ilk) gene. This loc/ilk mutant is associated with a severe defect in cardiomyocytes and endothelial cells that leads to severe myocardial dysfunction. Additional experiments revealed the epistatic regulation between laminin-alpha4 (Lama4), integrin, and Ilk, which led us to screen for mutations in the human ILK and LAMA4 genes in patients with severe dilated cardiomyopathy. We identified 2 novel amino acid residue-altering mutations (2828C>T [Pro943Leu] and 3217C>T [Arg1073X]) in the integrin-interacting domain of the LAMA4 gene and 1 mutation (785C>T [Ala262Val]) in the ILK gene. Biacore quantitative protein/protein interaction data, which have been used to determine the equilibrium dissociation constants, point to the loss of integrin-binding capacity in case of the Pro943Leu (Kd=5+/-3 micromol/L) and Arg1073X LAMA4 (Kd=1+/-0.2 micromol/L) mutants compared with the wild-type LAMA4 protein (Kd=440+/-20 nmol/L). Additional functional data point to the loss of endothelial cells in affected patients as a direct consequence of the mutant genes, which ultimately leads to heart failure. CONCLUSIONS: This is the first report on mutations in the laminin, integrin, and ILK system in human cardiomyopathy, which has consequences for endothelial cells as well as for cardiomyocytes, thus providing a new genetic basis for dilated cardiomyopathy in humans.


Asunto(s)
Cardiomiopatía Dilatada/genética , Células Endoteliales/patología , Laminina/genética , Mutación Missense , Miocitos Cardíacos/patología , Mutación Puntual , Proteínas Serina-Treonina Quinasas/genética , Adulto , Sustitución de Aminoácidos , Animales , Células COS , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Adhesión Celular , Chlorocebus aethiops , Mapeo Cromosómico , Codón sin Sentido , Análisis Mutacional de ADN , Embrión no Mamífero/patología , Epigénesis Genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Corazón/embriología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Humanos , Integrinas/metabolismo , Laminina/fisiología , Masculino , Persona de Mediana Edad , Modelos Moleculares , Miocardio/patología , Oligonucleótidos Antisentido/toxicidad , Linaje , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/fisiología , Estructura Terciaria de Proteína , Transfección , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
2.
Drug Alcohol Depend ; 90(2-3): 159-65, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17416470

RESUMEN

OPRM1, which codes for the mu-opioid receptor, is the most frequently studied candidate gene for opioid dependence. Despite numerous allelic association studies, no definitive conclusion has been reached regarding the role of OPRM1 polymorphisms in determining risk for opioid dependence. We attempted to resolve this by conducting a family-based association study and meta-analysis which may be more robust and powerful, respectively, than traditional case-control analyses. First, we genotyped three single nucleotide polymorphisms (SNPs) of OPRM1 in 1208 individuals from 473 Han Chinese families ascertained on the basis of having two or more siblings with DSM-IV-defined opioid dependence. The Val6Ala and Arg111His SNPs were detected, but with low minor allele frequencies (0.002 and 0.001, respectively). The Asn40Asp SNP was more informative (minor allele frequency: 0.419), but no significant evidence was observed for either a dominant (p=0.810) or additive (p=0.406) effect of this polymorphism on risk for opioid dependence. In addition, a meta-analysis of case-control studies of opioid dependence was performed, and found a similar lack of evidence for an association with the Asn40Asp SNP (p=0.859). Although a role of OPRM1 polymorphisms in determining risk for opioid dependence cannot be entirely discounted, a major contribution of the Asn40Asp polymorphism seems unlikely. Further analysis is warranted in samples from specific ancestral groups. In addition, it is critical that other OPRM1 variants, including all haplotype-tagging and amino-acid-coding SNPs, be tested for an influence on risk for opioid dependence, since the Asn40Asp polymorphism is only one of several hundred known mutations in the gene.


Asunto(s)
Dependencia de Heroína/genética , Receptores Opioides mu/genética , Alelos , ADN/análisis , Manual Diagnóstico y Estadístico de los Trastornos Mentales , Genotipo , Humanos , Polimorfismo Genético
3.
Hum Mutat ; 26(2): 145-52, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15957185

RESUMEN

The identification of common genetic variants such as single nucleotide polymorphisms (SNPs) in the human genome has become central in human population genetics and evolution studies, as well as in the study of the genetic basis of complex traits and diseases. Crucial for the accurate identification of genetic variants is the availability of high quality genomic DNA (gDNA). Since popular sources of gDNA (buccal cells, lymphocytes, hair bulb) often do not yield sufficient quantities of DNA for molecular genetic applications, whole genome amplification methods have recently been introduced to generate a renewable source of double-stranded linear DNA. Here, we assess the fidelity of one method, multiple displacement amplification (MDA), which utilizes bacteriophage Phi29 DNA polymerase to generate amplified DNA from an original source of gDNA, in a representative SNP discovery and genetic association study at the melanocortin 1 receptor (MC1R) locus, a highly polymorphic gene in humans involved in skin and hair pigmentation. We observed that MDA has high fidelity for novel SNP discovery and can be a valuable tool in generating a potentially indefinite source of DNA. However, we observed an allele amplification bias that causes genotype miscalls at heterozygous sites. At loci with multiple polymorphic sites in linkage disequilibrium, such as at MC1R, this bias can create a significant number of heterozygote genotype errors that subsequently misrepresents haplotypes.


Asunto(s)
Haplotipos , Polimorfismo Genético , Receptor de Melanocortina Tipo 1/genética , Receptor de Melanocortina Tipo 1/fisiología , Alelos , Fagos de Bacillus/metabolismo , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Genotipo , Heterocigoto , Humanos , Técnicas de Amplificación de Ácido Nucleico
4.
Hypertension ; 47(3): 415-20, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16432041

RESUMEN

Regulator of G protein signaling (RGS) proteins stimulate the GTPase activity of Galpha subunits of heterotrimeric G proteins, thereby negatively regulating G protein-coupled receptor signaling. RGS2, which preferentially alters Galphaq-mediated signaling, may be important for cardiovascular health, because knockout of RGS2 in mice is associated with altered smooth muscle relaxation and hypertension. In this study, we determined genetic variation in the human RGS2 gene by sequencing DNA in normotensive and hypertensive populations of whites (n=128) and blacks (n=122). We identified 14 single nucleotide polymorphisms and 2 two-base insertion/deletions (in/del; 1891 to 1892 TC and 2138 to 2139 AA). Although most of the genetic variants were found at low allelic frequency, in particular in coding regions, the 1891 to 1892 TC and 2138 to 2139 AA intronic in/del were in linkage disequilibrium and were associated with hypertension in blacks (P<0.05). We defined several haplotypes for the RGS2 gene, certain of which showed striking differences between whites and blacks. Additionally, 2 haplotypes had significantly different frequencies between hypertensive and normotensive black groups (P<0.05). We conclude that RGS2 is genetically conserved within coding regions but that the intronic in/del define ethnicity-specific haplotypes. Moreover, certain RGS2 variants that occur at greater frequency in hypertensive blacks may serve as ethnicity-specific genetic variants for this disease.


Asunto(s)
Población Negra/genética , Haplotipos , Hipertensión/genética , Polimorfismo Genético , Proteínas RGS/genética , Población Blanca/genética , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Secuencia Conservada , Elementos Transponibles de ADN , Femenino , Eliminación de Gen , Frecuencia de los Genes , Humanos , Hipertensión/etnología , Intrones , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda