Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Soft Matter ; 20(14): 3097-3106, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38333960

RESUMEN

Electrochemical gas-evolving reactions have been widely used for industrial energy conversion and storage processes. Gas bubbles form frequently at the electrode surface due to a small gas solubility, thereby reducing the effective reaction area and increasing the over-potential and ohmic resistance. However, the growth and motion mechanisms for tiny gas bubbles on the electrode remains elusive. Combining molecular dynamics (MD) and fluid dynamics simulations (CFD), we show that there exists a lateral solutal Marangoni force originating from an asymmetric distribution of dissolved gas near the bubble. Both MD and CFD simulations deliver a similar magnitude of the Marangoni force of ∼0.01 nN acting on the bubble. We demonstrate that this force may lead to lateral bubble oscillations and analyze the phenomenon of dynamic self-pinning of bubbles at the electrode boundary.

2.
Angew Chem Int Ed Engl ; 62(32): e202218850, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36637348

RESUMEN

Hydrogen (H2 ) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon-neutral standards. The share of green H2 is still too low to meet the net-zero target, while the demand for high-quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high-quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon-neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.

3.
Phys Chem Chem Phys ; 24(43): 26738-26752, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36314100

RESUMEN

The growth of single hydrogen bubbles at micro-electrodes is studied in an acidic electrolyte over a wide range of concentrations and cathodic potentials. New bubble growth regimes have been identified which differ in terms of whether the bubble evolution proceeds in the presence of a monotonic or oscillatory variation in the electric current and a carpet of microbubbles underneath the bubble. Key features such as the growth law of the bubble radius, the dynamics of the microbubble carpet, the onset time of the oscillations and the oscillation frequencies have been characterized as a function of the concentration and electric potential. Furthermore, the system's response to jumps in the cathodic potential has been studied. Based on the analysis of the forces involved and their scaling with the concentration, potential and electric current, a sound hypothesis is formulated regarding the mechanisms underlying the micro-bubble carpet and oscillations.

4.
Phys Chem Chem Phys ; 23(20): 11818-11830, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33988200

RESUMEN

The dynamics of single hydrogen bubbles electrogenerated in acidic electrolytes at a Pt microelectrode under potentiostatic conditions is investigated in microgravity during parabolic flights. Three bubble evolution scenarios have been identified depending on the electric potential applied and the acid concentration. The dominant scenario, characterized by lateral detachment of the grown bubble, is studied in detail. For that purpose, the evolution of the bubble radius, electric current and bubble trajectories, as well as the bubble lifetime are comprehensively addressed for different potentials and electrolyte concentrations. We focus particularly on analyzing bubble-bubble coalescence events which are responsible for reversals of the direction of bubble motion. Finally, as parabolic flights also permit hypergravity conditions, a detailed comparison of the characteristic bubble phenomena at various levels of gravity is drawn.

5.
Phys Rev Lett ; 123(21): 214503, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809136

RESUMEN

The dynamics of hydrogen bubbles produced via electrolysis in acidic electrolytes is studied in a combination of experiments and numerical simulations. A transition from monotonic to oscillatory bubble growth is observed after 2/3 of the bubble lifetime, if the electric potential exceeds -3 V. This work analyzes characteristic features of the oscillations in terms of bubble geometry, the thickness of the microbubble carpet, and the oscillation frequency. An explanation of the oscillation mechanisms is provided by the competition between buoyancy and electric force, the magnitude of which depends on the carpet thickness. Both the critical carpet thickness at detachment and the oscillation frequencies of the bubble as predicted by the model agree well with the experiment.

6.
Phys Chem Chem Phys ; 20(17): 11542-11548, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29651493

RESUMEN

Electrolytic gas evolution is a fundamental phenomenon occurring in a large number of industrial applications. In these processes gas bubbles are formed at the electrode from a supersaturated solution. Since dissolved gases can change the surface tension, a gas concentration gradient may cause the surface tension to vary locally at the interface of the gas bubble. Surface tension gradients may also form due to temperature gradients generated by ohmic heating of the electrolyte. In both cases, the resulting shear stress imposes a convection in the electrolyte and the gas bubble (Marangoni effect). This phenomenon may influence the entire electrolytic gas evolution process, e.g., by an enhanced mass transfer. In this study, the first evidence of the Marangoni convection near growing hydrogen bubbles, generated by water electrolysis, is provided. Microscopic high speed imaging was applied to study the evolution of single hydrogen bubbles at a microelectrode. The convection near the interface of the growing bubble was measured by using a time-resolved Particle Tracking Velocimetry (PTV) technique. The results indicate a clear correlation between the magnitude of the Marangoni convection and the electric current.

7.
ACS Appl Mater Interfaces ; 15(14): 18290-18299, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010817

RESUMEN

Emerging manufacturing technologies make it possible to design the morphology of electrocatalysts on the nanoscale in order to improve their efficiency in electrolysis processes. The current work investigates the effects of electrode-attached hydrogen bubbles on the performance of electrodes depending on their surface morphology and wettability. Ni-based electrocatalysts with hydrophilic and hydrophobic nanostructures are manufactured by electrodeposition, and their surface properties are characterized. Despite a considerably larger electrochemically active surface area, electrochemical analysis reveals that the samples with more pronounced hydrophobic properties perform worse at industrially relevant current densities. High-speed imaging shows significantly larger bubble detachment radii with higher hydrophobicity, meaning that the electrode surface area that is blocked by gas is larger than the area gained by nanostructuring. Furthermore, a slight tendency toward bubble size reduction of 7.5% with an increase in the current density is observed in 1 M KOH.

8.
Anal Chem ; 84(5): 2328-34, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22360304

RESUMEN

Deviating from the common expectation, magnetoelectrochemical structuring during deposition of diamagnetic ions was demonstrated, very recently. To achieve this, electrochemically inert paramagnetic ions have to be added to the electrolyte and the deposition has to be performed in a magnetic gradient field. A reverse structuring occurs, yielding thinner deposits near high gradient regions. In this paper we aim to clarify the mechanism of this reverse structuring. Potentiodynamic and potentiostatic investigations were performed, including measurements of the deposited mass with an electrochemical quartz crystal microbalance (EQCM). The convection of the electrolyte was studied in situ by astigmatism particle tracking velocimetry (APTV). It was revealed that during the reverse structuring a convection is induced in the electrolyte, which is directed away from the working electrode in regions of high magnetic gradients. Due to this additional convection, the overall deposition rate is increased, whereby it is locally reduced in regions of high magnetic gradients. The mechanism for reverse structuring is discussed in detail. Also, the influence of all relevant magnetic forces is addressed.

9.
Phys Rev E ; 106(3-2): 035105, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266864

RESUMEN

Hydrogen evolution in acidic aqueous electrolytes was recently found to be characterized by a carpet of microbubbles covering the microelectrode and feeding the growth of the main bubbles by coalescence. Besides this, oscillatory behavior of the main bubbles was observed prior to departure. Extending earlier studies, this work delivers the forces acting on the main bubble more accurately by taking into account further geometric and electrochemical details measured during experiments. Combining simulation work and measurements makes it possible to confirm the role of an attractive electrical (Coulomb) force caused by the adsorption of hydrogen ions at the bubble interface and to obtain a better understanding of the bubble dynamics observed.

10.
NPJ Microgravity ; 8(1): 56, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470890

RESUMEN

Electrochemical energy conversion technologies play a crucial role in space missions, for example, in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). They are also vitally important for future long-term space travel for oxygen, fuel and chemical production, where a re-supply of resources from Earth is not possible. Here, we provide an overview of currently existing electrolytic energy conversion technologies for space applications such as proton exchange membrane (PEM) and alkaline electrolyzer systems. We discuss the governing interfacial processes in these devices influenced by reduced gravitation and provide an outlook on future applications of electrolysis systems in, e.g., in-situ resource utilization (ISRU) technologies. A perspective of computational modelling to predict the impact of the reduced gravitational environment on governing electrochemical processes is also discussed and experimental suggestions to better understand efficiency-impacting processes such as gas bubble formation and detachment in reduced gravitational environments are outlined.

11.
Sci Rep ; 9(1): 5103, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911104

RESUMEN

A novel method to drive and manipulate fluid in a contactless way in a microelectrode-microfluidic system is demonstrated by combining the Lorentz and magnetic field gradient forces. The method is based on the redox-reaction [Fe(CN)6]3-/[Fe(CN)6]4- performed in a magnetic field oriented perpendicular to the ionic current that crosses the gap between two arrays of oppositely polarized microelectrodes, generating a magnetohydrodynamic flow. Additionally, a movable magnetized CoFe micro-strip is placed at different positions beneath the gap. In this region, the magnetic flux density is changed locally and a strong magnetic field gradient is formed. The redox-reaction changes the magnetic susceptibility of the electrolyte near the electrodes, and the resulting magnetic field gradient exerts a force on the fluid, which leads to a deflection of the Lorentz force-driven main flow. Particle Image Velocity measurements and numerical simulations demonstrate that by combining the two magnetic forces, the flow is not only redirected, but also a local change of concentration of paramagnetic species is realized.

12.
Sci Technol Adv Mater ; 9(2): 024208, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27877959

RESUMEN

This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B) fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD) effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.

13.
Phys Rev Lett ; 109(22): 229401; author reply 229402, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23368163
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda