Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell Commun Signal ; 18(1): 58, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264893

RESUMEN

BACKGROUND: Magnolia extract (ME) is known to inhibit cancer growth and metastasis in several cell types in vitro and in animal models. However, there is no detailed study on the preventive efficacy of ME for oral cancer, and the key components in ME and their exact mechanisms of action are not clear. The overall goal of this study is to characterize ME preclinically as a potent oral cancer chemopreventive agent and to determine the key components and their molecular mechanism(s) that underlie its chemopreventive efficacy. METHODS: The antitumor efficacy of ME in oral cancer was investigated in a 4-nitroquinoline-1-oxide (4NQO)-induced mouse model and in two oral cancer orthotopic models. The effects of ME on mitochondrial electron transport chain activity and ROS production in mouse oral tumors was also investigated. RESULTS: ME did not cause detectable side effects indicating that it is a promising and safe chemopreventive agent for oral cancer. Three major key active compounds in ME (honokiol, magnolol and 4-O-methylhonokiol) contribute to its chemopreventive effects. ME inhibits mitochondrial respiration at complex I of the electron transport chain, oxidizes peroxiredoxins, activates AMPK, and inhibits STAT3 phosphorylation, resulting in inhibition of the growth and proliferation of oral cancer cells. CONCLUSION: Our data using highly relevant preclinical oral cancer models, which share histopathological features seen in human oral carcinogenesis, suggest a novel signaling and regulatory role for mitochondria-generated superoxide and hydrogen peroxide in suppressing oral cancer cell proliferation, progression, and metastasis. Video abstract.


Asunto(s)
Antineoplásicos Fitogénicos , Compuestos de Bifenilo , Lignanos , Magnolia/química , Neoplasias de la Boca/prevención & control , Extractos Vegetales , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Lignanos/farmacología , Lignanos/uso terapéutico , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Especies Reactivas de Oxígeno
2.
J Biol Chem ; 293(26): 10363-10380, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29739855

RESUMEN

Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.


Asunto(s)
Mitocondrias/metabolismo , Técnicas de Sonda Molecular , Especies Reactivas de Oxígeno/metabolismo , Aconitato Hidratasa/metabolismo , Línea Celular , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Superóxidos/metabolismo
3.
Int J Mol Sci ; 20(12)2019 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-31234559

RESUMEN

An electron paramagnetic resonance (EPR) method was used to determine the concentration of the antitumor agent Triapine in BEAS-2B cells when Triapine was bound to iron (Fe). Knowledge of the concentration of Fe-Triapine in tumor cells may be useful to adjust the administration of the drug or to adjust iron uptake in tumor cells. An EPR spectrum is obtained for Fe(3+)-Triapine, Fe(3+)(Tp)2+, in BEAS-2B cells after addition of Fe(3+)(Tp)2+. Detection of the low spin signal for Fe(3+)(Tp)2+ shows that the Fe(3+)(Tp)2+ complex is intact in these cells. It is proposed that Triapine acquires iron from transferrin in cells including tumor cells. Here, it is shown that iron from purified Fe-transferrin is transferred to Triapine after the addition of ascorbate. To our knowledge, this is the first time that the EPR method has been used to determine the concentration of an iron antitumor agent in cells.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Hierro/análisis , Piridinas/análisis , Tiosemicarbazonas/análisis , Ácido Ascórbico/química , Células Cultivadas , Humanos , Hierro/química , Piridinas/química , Tiosemicarbazonas/química , Transferrina/metabolismo
4.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845710

RESUMEN

In a previous study on chromate toxicity, an increase in the 2Fe2S electron paramagnetic resonance (EPR) signal from mitochondria was found upon addition of chromate to human bronchial epithelial cells and bovine airway tissue ex vivo. This study was undertaken to show that a chromate-induced increase in the 2Fe2S EPR signal is a general phenomenon that can be used as a low-temperature EPR method to determine the maximum concentration of 2Fe2S centers in mitochondria. First, the low-temperature EPR method to determine the concentration of 2Fe2S clusters in cells and tissues is fully developed for other cells and tissues. The EPR signal for the 2Fe2S clusters N1b in Complex I and/or S1 in Complex II and the 2Fe2S cluster in xanthine oxidoreductase in rat liver tissue do not change in intensity because these clusters are already reduced; however, the EPR signals for N2, the terminal cluster in Complex I, and N4, the cluster preceding the terminal cluster, decrease upon adding chromate. More surprising to us, the EPR signals for N3, the cluster preceding the 2Fe2S cluster in Complex I, also decrease upon adding chromate. Moreover, this method is used to obtain the concentration of the 2Fe2S clusters in white blood cells where the 2Fe2S signal is mostly oxidized before treatment with chromate and becomes reduced and EPR detectable after treatment with chromate. The increase of the g = 1.94 2Fe2S EPR signal upon the addition of chromate can thus be used to obtain the relative steady-state concentration of the 2Fe2S clusters and steady-state concentration of Complex I and/or Complex II in mitochondria.


Asunto(s)
Bronquios/química , Cromatos/efectos adversos , Hígado/química , Mitocondrias/química , Animales , Bronquios/citología , Bronquios/efectos de los fármacos , Bovinos , Línea Celular Tumoral , Espectroscopía de Resonancia por Spin del Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Hígado/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Ratas , Xantina Deshidrogenasa/metabolismo
5.
J Biol Chem ; 292(36): 15070-15079, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739874

RESUMEN

Mutations in K-Ras and epidermal growth factor receptor (EGFR) are mutually exclusive, but it is not known how K-Ras activation inactivates EGFR, leading to resistance of cancer cells to anti-EGFR therapy. Here, we report that the K-Ras effector p38γ MAPK confers intrinsic resistance to small molecular tyrosine kinase inhibitors (TKIs) by concurrently stimulating EGFR gene transcription and protein dephosphorylation. We found that p38γ increases EGFR transcription by c-Jun-mediated promoter binding and stimulates EGFR dephosphorylation via activation of protein-tyrosine phosphatase H1 (PTPH1). Silencing the p38γ/c-Jun/PTPH1 signaling network increased sensitivities to TKIs in K-Ras mutant cells in which EGFR knockdown inhibited growth. Similar results were obtained with the p38γ-specific pharmacological inhibitor pirfenidone. These results indicate that in K-Ras mutant cancers, EGFR activity is regulated by the p38γ/c-Jun/PTPH1 signaling network, whose disruption may be a novel strategy to restore the sensitivity to TKIs.


Asunto(s)
Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transcripción Genética , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Fosforilación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Transcripción Genética/efectos de los fármacos
6.
J Biol Chem ; 287(18): 14681-91, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22399296

RESUMEN

Estrogen receptor (ER) α promotes breast cancer growth by regulating gene expression through classical estrogen response element (ERE) binding and nonclassical (interaction with c-Jun at AP-1 sites) pathways. ER is the target for anti-estrogens such as tamoxifen (TAM). However, the potential for classical versus nonclassical ER signaling to influence hormone sensitivity is not known. Moreover, anti-estrogens frequently activate several signaling cascades besides the target ER, and the implications of these "off-target" signaling events have not been explored. Here, we report that p38γ MAPK is selectively activated by treatment with TAM. This results in both phosphorylation of ER at Ser-118 and stimulation of c-Jun transcription, thus switching ER signaling from the classical to the nonclassical pathway leading to increased hormone sensitivity. Unexpectedly, phosphorylation at Ser-118 is required for ER to bind both p38γ and c-Jun, thereby promoting ER relocation from ERE to AP-1 promoter sites. Thus, ER/Ser-118 phosphorylation serves as a central mechanism by which p38γ regulates signaling transduction of ER with its inhibitor TAM.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-jun/biosíntesis , Elementos de Respuesta , Transcripción Genética , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Proteína Quinasa 12 Activada por Mitógenos/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-jun/genética , Tamoxifeno/farmacología
7.
Am J Physiol Lung Cell Mol Physiol ; 302(9): L949-58, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22268123

RESUMEN

Previous studies showed that coenzyme Q(1) (CoQ(1)) reduction on passage through the rat pulmonary circulation was catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex I, but that NQO1 genotype was not a factor in CoQ(1) reduction on passage through the mouse lung. The aim of the present study was to evaluate the complex I contribution to CoQ(1) reduction in the isolated perfused wild-type (NQO1(+/+)) and Nqo1-null (NQO1(-)/(-)) mouse lung. CoQ(1) reduction was measured as the steady-state pulmonary venous CoQ(1) hydroquinone (CoQ(1)H(2)) efflux rate during infusion of CoQ(1) into the pulmonary arterial inflow. CoQ(1)H(2) efflux rates during infusion of 50 µM CoQ(1) were not significantly different for NQO1(+/+) and NQO1(-/-) lungs (0.80 ± 0.03 and 0.68 ± 0.07 µmol·min(-1)·g lung dry wt(-1), respectively, P > 0.05). The mitochondrial complex I inhibitor rotenone depressed CoQ(1)H(2) efflux rates for both genotypes (0.19 ± 0.08 and 0.08 ± 0.04 µmol·min(-1)·g lung dry wt(-1) for NQO1(+/+) and NQO1(-/-), respectively, P < 0.05). Exposure of mice to 100% O(2) for 48 h also depressed CoQ(1)H(2) efflux rates in NQO1(+/+) and NQO1(-/-) lungs (0.43 ± 0.03 and 0.11 ± 0.04 µmol·min(-1)·g lung dry wt(-1), respectively, P < 0.05 by ANOVA). The impact of rotenone or hyperoxia on CoQ(1) redox metabolism could not be attributed to effects on lung wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total venous effluent CoQ(1) recoveries, the latter measured by spectrophotometry or mass spectrometry. Complex I activity in mitochondria-enriched lung fractions was depressed in hyperoxia-exposed lungs for both genotypes. This study provides new evidence for the potential utility of CoQ(1) as a nondestructive indicator of the impact of pharmacological or pathological exposures on complex I activity in the intact perfused mouse lung.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Pulmón/enzimología , Mitocondrias/enzimología , NAD(P)H Deshidrogenasa (Quinona)/genética , Ubiquinona/metabolismo , Animales , Biomarcadores/metabolismo , Hipoxia de la Célula , Complejo IV de Transporte de Electrones/metabolismo , Hidroquinonas/metabolismo , Técnicas In Vitro , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidación-Reducción , Perfusión , Cianuro de Potasio/farmacología , Ubiquinona/fisiología
8.
Adv Sci (Weinh) ; 9(12): e2101267, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35243806

RESUMEN

Atovaquone, an FDA-approved drug for malaria, is known to inhibit mitochondrial electron transport. A recently synthesized mitochondria-targeted atovaquone increased mitochondrial accumulation and antitumor activity in vitro. Using an in situ vaccination approach, local injection of mitochondria-targeted atovaquone into primary tumors triggered potent T cell immune responses locally and in distant tumor sites. Mitochondria-targeted atovaquone treatment led to significant reductions of both granulocytic myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. Mitochondria-targeted atovaquone treatment blocks the expression of genes involved in oxidative phosphorylation and glycolysis in granulocytic-myeloid-derived suppressor cells and regulatory T cells, which may lead to death of granulocytic-myeloid-derived suppressor cells and regulatory T cells. Mitochondria-targeted atovaquone inhibits expression of genes for mitochondrial complex components, oxidative phosphorylation, and glycolysis in both granulocytic-myeloid-derived suppressor cells and regulatory T cells. The resulting decreases in intratumoral granulocytic-myeloid-derived suppressor cells and regulatory T cells could facilitate the observed increase in tumor-infiltrating CD4+ T cells. Mitochondria-targeted atovaquone also improves the anti-tumor activity of PD-1 blockade immunotherapy. The results implicate granulocytic-myeloid-derived suppressor cells and regulatory T cells as novel targets of mitochondria-targeted atovaquone that facilitate its antitumor efficacy.


Asunto(s)
Neoplasias , Atovacuona/metabolismo , Atovacuona/farmacología , Atovacuona/uso terapéutico , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Microambiente Tumoral , Vacunación
9.
J Biol Chem ; 285(28): 21708-23, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20457604

RESUMEN

Mammalian thioredoxin reductase (TrxR) is an NADPH-dependent homodimer with three redox-active centers per subunit: a FAD, an N-terminal domain dithiol (Cys(59)/Cys(64)), and a C-terminal cysteine/selenocysteine motif (Cys(497)/Sec(498)). TrxR has multiple roles in antioxidant defense. Opposing these functions, it may also assume a pro-oxidant role under some conditions. In the absence of its main electron-accepting substrates (e.g. thioredoxin), wild-type TrxR generates superoxide (O ), which was here detected and quantified by ESR spin trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The peroxidase activity of wild-type TrxR efficiently converted the O adduct (DEPMPO/HOO(*)) to the hydroxyl radical adduct (DEPMPO/HO(*)). This peroxidase activity was Sec-dependent, although multiple mutants lacking Sec could still generate O . Variants of TrxR with C59S and/or C64S mutations displayed markedly reduced inherent NADPH oxidase activity, suggesting that the Cys(59)/Cys(64) dithiol is required for O generation and that O is not derived directly from the FAD. Mutations in the Cys(59)/Cys(64) dithiol also blocked the peroxidase and disulfide reductase activities presumably because of an inability to reduce the Cys(497)/Sec(498) active site. Although the bulk of the DEPMPO/HO(*) signal generated by wild-type TrxR was due to its combined NADPH oxidase and Sec-dependent peroxidase activities, additional experiments showed that some free HO(*) could be generated by the enzyme in an H(2)O(2)-dependent and Sec-independent manner. The direct NADPH oxidase and peroxidase activities of TrxR characterized here give insights into the full catalytic potential of this enzyme and may have biological consequences beyond those solely related to its reduction of thioredoxin.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , NADPH Oxidasas/química , Oxidantes/química , Peroxidasa/química , Selenio/química , Reductasa de Tiorredoxina-Disulfuro/química , Animales , Secuencia de Bases , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Radical Hidroxilo , Datos de Secuencia Molecular , Mutación , Pirroles/química , Proteínas Recombinantes/química , Tiorredoxinas/química
10.
Cancer Prev Res (Phila) ; 14(3): 285-306, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33303695

RESUMEN

Cancer chemoprevention is the most effective approach to control cancer in the population. Despite significant progress, chemoprevention has not been widely adopted because agents that are safe tend to be less effective and those that are highly effective tend to be toxic. Thus, there is an urgent need to develop novel and effective chemopreventive agents, such as mitochondria-targeted agents, that can prevent cancer and prolong survival. Mitochondria, the central site for cellular energy production, have important functions in cell survival and death. Several studies have revealed a significant role for mitochondrial metabolism in promoting cancer development and progression, making mitochondria a promising new target for cancer prevention. Conjugating delocalized lipophilic cations, such as triphenylphosphonium cation (TPP+), to compounds of interest is an effective approach for mitochondrial targeting. The hyperpolarized tumor cell membrane and mitochondrial membrane potential allow for selective accumulation of TPP+ conjugates in tumor cell mitochondria versus those in normal cells. This could enhance direct killing of precancerous, dysplastic, and tumor cells while minimizing potential toxicities to normal cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cationes/química , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias/metabolismo , Neoplasias/patología , Compuestos Organofosforados/química
11.
Commun Biol ; 4(1): 906, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34302042

RESUMEN

Expressed on cells of the myeloid and lymphoid lineages, V-domain Ig Suppressor of T cell Activation (VISTA) is an emerging target for cancer immunotherapy. Blocking VISTA activates both innate and adaptive immunity to eradicate tumors in mice. Using a tripeptide small molecule antagonist of VISTA CA170, we found that it exhibited potent anticancer efficacy on carcinogen-induced mouse lung tumorigenesis. Remarkably, lung tumor development was almost completely suppressed when CA170 was combined with an MHCII-directed KRAS peptide vaccine. Flow cytometry and single-cell RNA sequencing (scRNA-seq) revealed that CA170 increased CD8+ T cell infiltration and enhanced their effector functions by decreasing the tumor infiltration of myeloid-derived suppressor cells (MDSCs) and Regulatory T (Treg) cells, while the Kras vaccine primarily induced expansion of CD4+ effector T cells. VISTA antagonism by CA170 revealed strong efficacy against lung tumorigenesis with broad immunoregulatory functions that influence effector, memory and regulatory T cells, and drives an adaptive T cell tumor-specific immune response that enhances the efficacy of the KRAS vaccine.


Asunto(s)
Carcinogénesis/genética , Neoplasias Pulmonares/genética , Pulmón/patología , Proteínas de la Membrana/antagonistas & inhibidores , Animales , Femenino , Ratones
12.
Cancer Res ; 80(16): 3251-3264, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32580961

RESUMEN

KRAS is mutated in most pancreatic ductal adenocarcinomas (PDAC) and yet remains undruggable. Here, we report that p38γ MAPK, which promotes PDAC tumorigenesis by linking KRAS signaling and aerobic glycolysis (also called the Warburg effect), is a novel therapeutic target. p38γ interacted with a glycolytic activator PFKFB3 that was dependent on mutated KRAS. KRAS transformation and overexpression of p38γ increased expression of PFKFB3 and glucose transporter GLUT2, conversely, silencing mutant KRAS, and p38γ decreased PFKFB3 and GLUT2 expression. p38γ phosphorylated PFKFB3 at S467, stabilized PFKFB3, and promoted their interaction with GLUT2. Pancreatic knockout of p38γ decreased p-PFKFB3/PFKFB3/GLUT2 protein levels, reduced aerobic glycolysis, and inhibited PDAC tumorigenesis in KPC mice. PFKFB3 and GLUT2 depended on p38γ to stimulate glycolysis and PDAC growth and p38γ required PFKFB3/S467 to promote these activities. A p38γ inhibitor cooperated with a PFKFB3 inhibitor to blunt aerobic glycolysis and PDAC growth, which was dependent on p38γ. Moreover, overexpression of p38γ, p-PFKFB3, PFKFB3, and GLUT2 in PDAC predicted poor clinical prognosis. These results indicate that p38γ links KRAS oncogene signaling and aerobic glycolysis to promote pancreatic tumorigenesis through PFKFB3 and GLUT2, and that p38γ and PFKFB3 may be targeted for therapeutic intervention in PDAC. SIGNIFICANCE: These findings show that p38γ links KRAS oncogene signaling and the Warburg effect through PFKBF3 and Glut2 to promote pancreatic tumorigenesis, which can be disrupted via inhibition of p38γ and PFKFB3.


Asunto(s)
Carcinoma Ductal Pancreático/etiología , Transportador de Glucosa de Tipo 2/metabolismo , Glucólisis , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/etiología , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Aerobiosis , Animales , Carcinoma Ductal Pancreático/prevención & control , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Colágeno , Combinación de Medicamentos , Femenino , Técnicas de Inactivación de Genes , Silenciador del Gen , Genes ras , Técnicas de Genotipaje , Humanos , Laminina , Masculino , Ratones , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/prevención & control , Fosforilación , Pronóstico , Proteoglicanos , Proteínas Proto-Oncogénicas p21(ras)/genética
13.
Toxicology ; 257(1-2): 95-104, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19135121

RESUMEN

Inhalation is a common form of exposure to acrolein, a toxic reactive volatile aldehyde that is a ubiquitous environmental pollutant. Bronchial epithelial cells would be directly exposed to inhaled acrolein. The thioredoxin (Trx) system is essential for the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, thioredoxin reductase (TrxR) maintains the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins in the reduced state, and the thioredoxins keep the peroxiredoxins (Prx) reduced, thereby supporting their peroxidase function. The effects of acrolein on TrxR, Trx and Prx in human bronchial epithelial (BEAS-2B) cells were determined. A 30-min exposure to 5 microM acrolein oxidized both Trx1 and Trx2, although significant effects were noted for Trx1 at even lower acrolein concentrations. The effects on Trx1 and Trx2 could not be reversed by treatment with disulfide reductants. TrxR activity was inhibited 60% and >85% by 2.5 and 5 microM acrolein, respectively. The endogenous electron donor for TrxR, NADPH, could not restore its activity, and activity did not recover in cells during a 4-h acrolein-free period in complete medium. The effects of acrolein on TrxR and Trx therefore extend beyond the duration of exposure. While there was a strong correlation between TrxR inhibition and Trx1 oxidation, the irreversible effects on Trx1 suggest direct effects of acrolein rather than loss of reducing equivalents from TrxR. Trx2 did not become oxidized until > or = 90% of TrxR was inhibited, but irreversible effects on Trx2 also suggest direct effects of acrolein. Prx1 (cytosolic) and Prx3 (mitochondrial) shifted to a largely oxidized state only when >90 and 100% of their respective Trxs were oxidized. Prx oxidation was readily reversed with a disulfide reductant, suggesting that Prx oxidation resulted from lack of reducing equivalents from Trx and not direct reaction with acrolein. The effects of acrolein on the thioredoxin system and peroxiredoxins could have important implications for cell survival, redox-sensitive cell signaling, and tolerance to other oxidant insults.


Asunto(s)
Acroleína/toxicidad , Contaminantes Atmosféricos/toxicidad , Bronquios/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Células Epiteliales/efectos de los fármacos , Peroxirredoxinas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Tiorredoxinas/metabolismo , Bronquios/enzimología , Células Cultivadas , Disulfuros/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/enzimología , Humanos , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Peroxiredoxina III , Reductasa de Tiorredoxina-Disulfuro/metabolismo
14.
Nat Commun ; 10(1): 2205, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101821

RESUMEN

Lung cancer often has a poor prognosis, with brain metastases a major reason for mortality. We modified lonidamine (LND), an antiglycolytic drug with limited efficacy, to mitochondria-targeted mito-lonidamine (Mito-LND) which is 100-fold more potent. Mito-LND, a tumor-selective inhibitor of oxidative phosphorylation, inhibits mitochondrial bioenergetics in lung cancer cells and mitigates lung cancer cell viability, growth, progression, and metastasis of lung cancer xenografts in mice. Mito-LND blocks lung tumor development and brain metastasis by inhibiting mitochondrial bioenergetics, stimulating the formation of reactive oxygen species, oxidizing mitochondrial peroxiredoxin, inactivating AKT/mTOR/p70S6K signaling, and inducing autophagic cell death in lung cancer cells. Mito-LND causes no toxicity in mice even when administered for eight weeks at 50 times the effective cancer inhibitory dose. Collectively, these findings show that mitochondrial targeting of LND is a promising therapeutic approach for investigating the role of autophagy in mitigating lung cancer development and brain metastasis.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Indazoles/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/secundario , Carcinogénesis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/secundario , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Femenino , Humanos , Indazoles/uso terapéutico , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Toxicology ; 243(1-2): 164-76, 2008 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-18023956

RESUMEN

Acrolein is a reactive aldehyde that is a widespread environmental pollutant and can be generated endogenously from lipid peroxidation. The thioredoxin (Trx) system in endothelial cells plays a major role in the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, cells maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. In human microvascular endothelial cells, Trx1 was more sensitive than Trx2 to oxidation by acrolein. A 30-min exposure to 2.5 microM acrolein caused partial oxidation of Trx1 but not Trx2. The active site dithiol of Trx1 was essentially completely oxidized by 5 microM acrolein whereas 12.5 microM was required for complete oxidation of Trx2. Partial recovery of the Trx1 redox status was observed over a 4h acrolein-free recovery period, with increases in the reduced form and decreases in the fully oxidized form. For cells treated with 2.5 or 5 microM acrolein the recovery did not require protein synthesis, whereas protein synthesis was required for the return of reduced Trx1 in cells treated with 12.5 microM acrolein. Pretreatment of cells with N-acetylcysteine (NAC) resulted in partial protection of Trx1 from oxidation by acrolein. In cells treated with acrolein for 30 min, followed by a 14- to 16-h acrolein-free period, small but significant cytotoxic effects were observed with 2.5 microM acrolein whereas all cells were adversely affected by >or= 12.5 microM. NAC pretreatment significantly decreased the percentage of stressed cells subsequently exposed to 5 or 12.5 microM acrolein. Given the critical role of the thioredoxins in cell survival, the ability of acrolein to oxidize both thioredoxins should be taken into account for a thorough understanding of its cytotoxic effects.


Asunto(s)
Acroleína/toxicidad , Citosol/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Tiorredoxinas/metabolismo , Acetilcisteína/farmacología , Línea Celular , Citosol/metabolismo , Citosol/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción
16.
Toxicology ; 246(2-3): 222-33, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18328613

RESUMEN

Hexavalent chromium [Cr(VI)] species such as chromates are cytotoxic. Inhalational exposure is a primary concern in many Cr-related industries and their immediate environments, and bronchial epithelial cells are directly exposed to inhaled Cr(VI). Chromates are readily taken up by cells and are reduced to reactive Cr species which may also result in the generation of reactive oxygen species (ROS). The thioredoxin (Trx) system has a key role in the maintenance of cellular thiol redox balance and is essential for cell survival. Cells normally maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. Redox Western blots were used to assess the redox status of the thioredoxins in normal human bronchial epithelial cells (BEAS-2B) incubated with soluble Na2CrO4 or insoluble ZnCrO4 for different periods of time. Both chromates caused a dose- and time-dependent oxidation of Trx2 and Trx1. Trx2 was more susceptible in that it could all be converted to the oxidized form, whereas a small amount of reduced Trx1 remained even after prolonged treatment with higher Cr concentrations. Only one of the dithiols, presumably the active site, of Trx1 was oxidized by Cr(VI). Cr(VI) did not cause significant GSH depletion or oxidation indicating that Trx oxidation does not result from a general oxidation of cellular thiols. With purified Trx and thioredoxin reductase (TrxR) in vitro, Cr(VI) also resulted in Trx oxidation. It was determined that purified TrxR has pronounced Cr(VI) reducing activity, so competition for electron flow from TrxR might impair its ability to reduce Trx. The in vitro data also suggested some direct redox interaction between Cr(VI) and Trx. The ability of Cr(VI) to cause Trx oxidation in cells could contribute to its cytotoxic effects, and could have important implications for cell survival, redox-sensitive cell signaling, and the cells' tolerance of other oxidant insults.


Asunto(s)
Bronquios/efectos de los fármacos , Carcinógenos Ambientales/toxicidad , Cromo/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Tiorredoxinas/metabolismo , Bronquios/metabolismo , Carcinógenos Ambientales/análisis , Línea Celular , Cromatos/toxicidad , Cromatografía Líquida de Alta Presión , Cromo/análisis , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/análisis , Glutatión/análisis , Glutatión/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Mucosa Respiratoria/metabolismo , Compuestos de Sodio/toxicidad , Detección de Spin , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Compuestos de Zinc/toxicidad
17.
Chem Biodivers ; 5(8): 1545-1557, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18729091

RESUMEN

Chromium (Cr) is a cytotoxic metal that can be associated with a variety of types of DNA damage, including Cr-DNA adducts and strand breaks. Prior studies with purified human cytochrome b(5) and NADPH:P450 reductase in reconstituted proteoliposomes (PLs) demonstrated rapid reduction of Cr(VI) (hexavalent chromium, as CrO(4)(2-), and the generation of Cr(V), superoxide (O(2)(*-)), and hydroxyl radical (HO(*)). Studies reported here examined the potential for the species produced by this system to interact with DNA. Strand breaks of purified plasmid DNA increased over time aerobically, but were not observed in the absence of O(2). Cr(V) is formed under both conditions, so the breaks are not mediated directly by Cr(V). The aerobic strand breaks were significantly prevented by catalase and EtOH, but not by the metal chelator diethylenetriaminepentaacetic acid (DTPA), suggesting that they are largely due to HO(*) from Cr-mediated redox cycling. EPR was used to assess the formation of Cr-DNA complexes. Following a 10-min incubation of PLs, CrO(4)(2-), and plasmid DNA, intense EPR signals at g=5.7 and g=5.0 were observed. These signals are attributed to specific Cr(III) complexes with large zero field splitting (ZFS). Without DNA, the signals in the g=5 region were weak. The large ZFS signals were not seen, when Cr(III)Cl(3) was incubated with DNA, suggesting that the Cr(III)-DNA interactions are different when generated by the PLs. After 24 h, a broad signal at g=2 is attributed to Cr(III) complexes with a small ZFS. This g=2 signal was observed without DNA, but it was different from that seen with plasmid. It is concluded that EPR can detect specific Cr(III) complexes that depend on the presence of plasmid DNA and the manner in which the Cr(III) is formed.


Asunto(s)
Compuestos de Cromo/química , Citocromos b5/química , Roturas del ADN de Doble Cadena , Proteolípidos/química , Compuestos de Cromo/síntesis química , ADN Bacteriano/química , Escherichia coli/química , Humanos , Radical Hidroxilo/síntesis química , Radical Hidroxilo/química , NADPH-Ferrihemoproteína Reductasa/química , Oxidación-Reducción , Superóxidos/síntesis química , Superóxidos/química , Factores de Tiempo
18.
iScience ; 3: 192-207, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-30428319

RESUMEN

We synthesized a mitochondria-targeted honokiol (Mito-HNK) that facilitates its mitochondrial accumulation; this dramatically increases its potency and efficacy against highly metastatic lung cancer lines in vitro, and in orthotopic lung tumor xenografts and brain metastases in vivo. Mito-HNK is >100-fold more potent than HNK in inhibiting cell proliferation, inhibiting mitochondrial complex ?, stimulating reactive oxygen species generation, oxidizing mitochondrial peroxiredoxin-3, and suppressing the phosphorylation of mitoSTAT3. Within lung cancer brain metastases in mice, Mito-HNK induced the mediators of cell death and decreased the pathways that support invasion and proliferation. In contrast, in the non-malignant stroma, Mito-HNK suppressed pathways that support metastatic lesions, including those involved in inflammation and angiogenesis. Mito-HNK showed no toxicity and targets the metabolic vulnerabilities of primary and metastatic lung cancers. Its pronounced anti-invasive and anti-metastatic effects in the brain are particularly intriguing given the paucity of treatment options for such patients either alone or in combination with standard chemotherapeutics.

19.
Free Radic Biol Med ; 42(6): 738-55; discussion 735-7, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17320757

RESUMEN

The reduction of hexavalent chromium, Cr(VI), can generate reactive Cr intermediates and various types of oxidative stress. The potential role of human microsomal enzymes in free radical generation was examined using reconstituted proteoliposomes (PLs) containing purified cytochrome b(5) and NADPH:P450 reductase. Under aerobic conditions, the PLs reduced Cr(VI) to Cr(V) which was confirmed by ESR using isotopically pure (53)Cr(VI). When 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) was included as a spin trap, a very prominent signal for the hydroxyl radical (HO()) adduct was observed as well as a smaller signal for the superoxide (O(2)(-)) adduct. These adducts were observed even at very low Cr(VI) concentrations (10 muM). NADPH, Cr(VI), O(2), and the PLs were all required for significant HO() generation. Superoxide dismutase eliminated the O(2)(-) adduct and resulted in a 30% increase in the HO() adduct. Catalase largely diminished the HO() adduct signal, indicating its dependence on H(2)O(2). Some sources of catalase were found to have Cr(VI)-reducing contaminants which could confound results, but a source of catalase free of these contaminants was used for these studies. Exogenous H(2)O(2) was not needed, indicating that it was generated by the PLs. Adding exogenous H(2)O(2), however, did increase the amount of DEPMPO/HO() adduct. The inclusion of formate yielded the carbon dioxide radical adduct of DEPMPO, and experiments with dimethyl sulfoxide (DMSO) plus the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) yielded the methoxy and methyl radical adducts of PBN, confirming the generation of HO(). Quantification of the various species over time was consistent with a stoichiometric excess of HO() relative to the net amount of Cr(VI) reduced. This also represents the first demonstration of a role for cytochrome b(5) in the generation of HO(). Overall, the simultaneous generation of Cr(V) and H(2)O(2) by the PLs and the resulting generation of HO() at low Cr(VI) concentrations could have important implications for Cr(VI) toxicity.


Asunto(s)
Cromo/química , Citocromos b5/metabolismo , Radical Hidroxilo , Superóxidos/metabolismo , Animales , Cromo/farmacología , Dimetilsulfóxido/química , Yema de Huevo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fosfatidilcolinas/metabolismo , Proteolípidos/química , Pirroles/farmacología
20.
Free Radic Biol Med ; 91: 81-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26686468

RESUMEN

Peroxiredoxin-3 (Prx3) accounts for about 90% of mitochondrial peroxidase activity, and its marked upregulation in many cancers is important for cell survival. Prx3 oxidation can critically alter peroxide signaling and defense and can be a seminal event in promoting cell death. Here it is shown that this mechanism can be exploited pharmacologically by combinations of clinically available drugs that compromise Prx3 function in different ways. Clinically relevant levels of the thiosemicarbazone iron chelators triapine (Tp) and 2,2'-Dipyridyl-N,N-dimethylsemicarbazone (Dp44mT) promote selective oxidation of mitochondrial Prx3, but not cytosolic Prx1, in multiple human lung and ovarian cancer lines. Decreased cell survival closely correlates with Prx3 oxidation. However, Prx3 oxidation is not merely an indicator of cell death as cytotoxic concentrations of cisplatin do not cause Prx3 oxidation. The siRNA-mediated suppression of either Prx3 or thioredoxin-2, which supports Prx3, enhances Tp's cytotoxicity. Tp-mediated Prx3 oxidation is driven by enhanced peroxide generation, but not by nitric oxide. Many tumors overexpress thioredoxin reductase (TrxR) which supports Prx activity. Direct inhibitors of TrxR (e.g. auranofin, cisplatin) markedly enhanced Tp's cytotoxicity, and auranofin enhanced Prx3 oxidation by low dose Tp. Together, these results support an important role for Prx3 oxidation in the cytotoxicity of Tp, and demonstrate that TrxR inhibitors can significantly enhance Tp's cytotoxicity. Thiosemicarbazone-based regimens could prove effective for targeting Prx3 in a variety of cancers.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/enzimología , Piridinas/farmacología , Tiosemicarbazonas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Mitocondrias/efectos de los fármacos , Oxidación-Reducción , Peroxiredoxina III/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda