Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neurosci ; 39(24): 4694-4713, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30948475

RESUMEN

Adult zebrafish, in contrast to mammals, regenerate neurons in their brain, but the extent and variability of this capacity is unclear. Here we ask whether the loss of various dopaminergic neuron populations is sufficient to trigger their functional regeneration. Both sexes of zebrafish were analyzed. Genetic lineage tracing shows that specific diencephalic ependymo-radial glial (ERG) progenitor cells give rise to new dopaminergic [tyrosine hydroxylase-positive (TH+)] neurons. Ablation elicits an immune response, increased proliferation of ERG progenitor cells, and increased addition of new TH+ neurons in populations that constitutively add new neurons (e.g., diencephalic population 5/6). Inhibiting the immune response attenuates neurogenesis to control levels. Boosting the immune response enhances ERG proliferation, but not addition of TH+ neurons. In contrast, in populations in which constitutive neurogenesis is undetectable (e.g., the posterior tuberculum and locus ceruleus), cell replacement and tissue integration are incomplete and transient. This is associated with a loss of spinal TH+ axons, as well as permanent deficits in shoaling and reproductive behavior. Hence, dopaminergic neuron populations in the adult zebrafish brain show vast differences in regenerative capacity that correlate with constitutive addition of neurons and depend on immune system activation.SIGNIFICANCE STATEMENT Despite the fact that zebrafish show a high propensity to regenerate neurons in the brain, this study reveals that not all types of dopaminergic neurons are functionally regenerated after specific ablation. Hence, in the same adult vertebrate brain, mechanisms of successful and incomplete regeneration can be studied. We identify progenitor cells for dopaminergic neurons and show that activating the immune system promotes the proliferation of these cells. However, in some areas of the brain this only leads to insufficient replacement of functionally important dopaminergic neurons that later disappear. Understanding the mechanisms of regeneration in zebrafish may inform interventions targeting the regeneration of functionally important neurons, such as dopaminergic neurons, from endogenous progenitor cells in nonregenerating mammals.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Fenómenos del Sistema Inmunológico/fisiología , Regeneración Nerviosa/fisiología , Pez Cebra/fisiología , Envejecimiento , Animales , Axones/fisiología , Linaje de la Célula/genética , Proliferación Celular , Diencéfalo/citología , Diencéfalo/fisiología , Femenino , Masculino , Microglía/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Conducta Sexual Animal/fisiología
2.
Dev Biol ; 432(1): 53-62, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28502615

RESUMEN

Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury.


Asunto(s)
Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Células-Madre Neurales/fisiología , Neuronas/fisiología
3.
J Physiol ; 595(6): 2147-2160, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28083896

RESUMEN

KEY POINTS: Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. ABSTRACT: Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses with CA3 pyramidal cells via large mossy-fibre boutons, but rather to all synapses formed by dentate granule cells. Therefore, presynaptic mitochondrial function is critical for the short-term dynamics of synapse function, which may contribute to the cognitive deficits observed in pathological mitochondrial dysfunction.


Asunto(s)
Transferasas Alquil y Aril/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Proteínas de la Membrana/fisiología , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Transferasas Alquil y Aril/genética , Animales , Proteínas de la Membrana/genética , Ratones Transgénicos , Transmisión Sináptica
4.
Dev Cell ; 56(11): 1617-1630.e6, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34033756

RESUMEN

Central nervous system injury re-initiates neurogenesis in anamniotes (amphibians and fishes), but not in mammals. Activation of the innate immune system promotes regenerative neurogenesis, but it is fundamentally unknown whether this is indirect through the activation of known developmental signaling pathways or whether immune cells directly signal to progenitor cells using mechanisms that are unique to regeneration. Using single-cell RNA-seq of progenitor cells and macrophages, as well as cell-type-specific manipulations, we provide evidence for a direct signaling axis from specific lesion-activated macrophages to spinal progenitor cells to promote regenerative neurogenesis in zebrafish. Mechanistically, TNFa from pro-regenerative macrophages induces Tnfrsf1a-mediated AP-1 activity in progenitors to increase regeneration-promoting expression of hdac1 and neurogenesis. This establishes the principle that macrophages directly communicate to spinal progenitor cells via non-developmental signals after injury, providing potential targets for future interventions in the regeneration-deficient spinal cord of mammals.


Asunto(s)
Histona Desacetilasa 1/genética , Neurogénesis/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Regeneración/genética , Médula Espinal/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Animales , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Macrófagos/citología , Macrófagos/metabolismo , RNA-Seq , Transducción de Señal/genética , Análisis de la Célula Individual , Médula Espinal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción AP-1/genética , Pez Cebra/genética
5.
J Clin Invest ; 129(12): 5312-5326, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31503551

RESUMEN

Growing evidence shows that alterations occurring at early developmental stages contribute to symptoms manifested in adulthood in the setting of neurodegenerative diseases. Here, we studied the molecular mechanisms causing giant axonal neuropathy (GAN), a severe neurodegenerative disease due to loss-of-function of the gigaxonin-E3 ligase. We showed that gigaxonin governs Sonic Hedgehog (Shh) induction, the developmental pathway patterning the dorso-ventral axis of the neural tube and muscles, by controlling the degradation of the Shh-bound Patched receptor. Similar to Shh inhibition, repression of gigaxonin in zebrafish impaired motor neuron specification and somitogenesis and abolished neuromuscular junction formation and locomotion. Shh signaling was impaired in gigaxonin-null zebrafish and was corrected by both pharmacological activation of the Shh pathway and human gigaxonin, pointing to an evolutionary-conserved mechanism regulating Shh signaling. Gigaxonin-dependent inhibition of Shh activation was also demonstrated in primary fibroblasts from patients with GAN and in a Shh activity reporter line depleted in gigaxonin. Our findings establish gigaxonin as a key E3 ligase that positively controls the initiation of Shh transduction, and reveal the causal role of Shh dysfunction in motor deficits, thus highlighting the developmental origin of GAN.


Asunto(s)
Proteínas del Citoesqueleto/genética , Neuropatía Axonal Gigante/etiología , Proteínas Hedgehog/fisiología , Mutación , Animales , Proteínas del Citoesqueleto/fisiología , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Ratones , Neuronas Motoras/fisiología , Músculos/inervación , Células 3T3 NIH , Receptor Patched-1/fisiología , Transducción de Señal , Somitos/fisiología , Pez Cebra
6.
Cell Rep ; 13(5): 924-32, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26565906

RESUMEN

In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.


Asunto(s)
Neuronas Motoras/metabolismo , Regeneración Nerviosa , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Médula Espinal/crecimiento & desarrollo , Animales , Interneuronas/citología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Serotonina/farmacología , Médula Espinal/citología , Médula Espinal/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda