Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
BMC Bioinformatics ; 21(Suppl 23): 579, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33372606

RESUMEN

BACKGROUND: Entity normalization is an important information extraction task which has gained renewed attention in the last decade, particularly in the biomedical and life science domains. In these domains, and more generally in all specialized domains, this task is still challenging for the latest machine learning-based approaches, which have difficulty handling highly multi-class and few-shot learning problems. To address this issue, we propose C-Norm, a new neural approach which synergistically combines standard and weak supervision, ontological knowledge integration and distributional semantics. RESULTS: Our approach greatly outperforms all methods evaluated on the Bacteria Biotope datasets of BioNLP Open Shared Tasks 2019, without integrating any manually-designed domain-specific rules. CONCLUSIONS: Our results show that relatively shallow neural network methods can perform well in domains that present highly multi-class and few-shot learning problems.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Bacterias/metabolismo , Intervalos de Confianza , Bases de Datos como Asunto , Ecosistema , Humanos , Conocimiento , Aprendizaje Automático , Fenotipo
2.
Food Microbiol ; 81: 63-75, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30910089

RESUMEN

Information on food microbial diversity is scattered across millions of scientific papers. Researchers need tools to assist their bibliographic search in such large collections. Text mining and knowledge engineering methods are useful to automatically and efficiently find relevant information in Life Science. This work describes how the Alvis text mining platform has been applied to a large collection of PubMed abstracts of scientific papers in the food microbiology domain. The information targeted by our work is microorganisms, their habitats and phenotypes. Two knowledge resources, the NCBI taxonomy and the OntoBiotope ontology were used to detect this information in texts. The result of the text mining process was indexed and is presented through the AlvisIR Food on-line semantic search engine. In this paper, we also show through two illustrative examples the great potential of this new tool to assist in studies on ecological diversity and the origin of microbial presence in food.


Asunto(s)
Biodiversidad , Biología Computacional/métodos , Minería de Datos/métodos , Microbiología de Alimentos , Algoritmos , Ontologías Biológicas , Bases de Datos Bibliográficas , Bases de Datos Factuales , Ecosistema , Humanos , Servicios de Información , Almacenamiento y Recuperación de la Información , Internet , Literatura , MEDLINE , National Library of Medicine (U.S.) , Fenotipo , Filogenia , PubMed , Programas Informáticos , Estados Unidos
3.
BMC Bioinformatics ; 16 Suppl 10: S1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26202448

RESUMEN

BACKGROUND: We present the two Bacteria Track tasks of BioNLP 2013 Shared Task (ST): Gene Regulation Network (GRN) and Bacteria Biotope (BB). These tasks were previously introduced in the 2011 BioNLP-ST Bacteria Track as Bacteria Gene Interaction (BI) and Bacteria Biotope (BB). The Bacteria Track was motivated by a need to develop specific BioNLP tools for fine-grained event extraction in bacteria biology. The 2013 tasks expand on the 2011 version by better addressing the biological knowledge modeling needs. New evaluation metrics were designed for the new goals. Moving beyond a list of gene interactions, the goal of the GRN task is to build a gene regulation network from the extracted gene interactions. BB'13 is dedicated to the extraction of bacteria biotopes, i.e. bacterial environmental information, as was BB'11. BB'13 extends the typology of BB'11 to a large diversity of biotopes, as defined by the OntoBiotope ontology. The detection of entities and events is tackled by distinct subtasks in order to measure the progress achieved by the participant systems since 2011. RESULTS: This paper details the corpus preparations and the evaluation metrics, as well as summarizing and discussing the participant results. Five groups participated in each of the two tasks. The high diversity of the participant methods reflects the dynamism of the BioNLP research community. CONCLUSION: The evaluation results suggest new research directions for the improvement and development of Information Extraction for molecular and environmental biology. The Bacteria Track tasks remain publicly open; the BioNLP-ST website provides an online evaluation service, the reference corpora and the evaluation tools.


Asunto(s)
Bacterias/genética , Microbiología Ambiental , Epistasis Genética , Redes Reguladoras de Genes , Genes Bacterianos , Almacenamiento y Recuperación de la Información , Humanos , Procesamiento de Lenguaje Natural
4.
PLoS One ; 19(6): e0305475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870159

RESUMEN

Wheat varieties show a large diversity of traits and phenotypes. Linking them to genetic variability is essential for shorter and more efficient wheat breeding programs. A growing number of plant molecular information networks provide interlinked interoperable data to support the discovery of gene-phenotype interactions. A large body of scientific literature and observational data obtained in-field and under controlled conditions document wheat breeding experiments. The cross-referencing of this complementary information is essential. Text from databases and scientific publications has been identified early on as a relevant source of information. However, the wide variety of terms used to refer to traits and phenotype values makes it difficult to find and cross-reference the textual information, e.g. simple dictionary lookup methods miss relevant terms. Corpora with manually annotated examples are thus needed to evaluate and train textual information extraction methods. While several corpora contain annotations of human and animal phenotypes, no corpus is available for plant traits. This hinders the evaluation of text mining-based crop knowledge graphs (e.g. AgroLD, KnetMiner, WheatIS-FAIDARE) and limits the ability to train machine learning methods and improve the quality of information. The Triticum aestivum trait Corpus is a new gold standard for traits and phenotypes of wheat. It consists of 528 PubMed references that are fully annotated by trait, phenotype, and species. We address the interoperability challenge of crossing sparse assay data and publications by using the Wheat Trait and Phenotype Ontology to normalize trait mentions and the species taxonomy of the National Center for Biotechnology Information to normalize species. The paper describes the construction of the corpus. A study of the performance of state-of-the-art language models for both named entity recognition and linking tasks trained on the corpus shows that it is suitable for training and evaluation. This corpus is currently the most comprehensive manually annotated corpus for natural language processing studies on crop phenotype information from the literature.


Asunto(s)
Minería de Datos , Fenotipo , Fitomejoramiento , Triticum , Triticum/genética , Fitomejoramiento/métodos , Minería de Datos/métodos
5.
Data Brief ; 54: 110404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38665156

RESUMEN

There is a growing interest in milk oligosaccharides (MOs) because of their numerous benefits for newborns' and long-term health. A large number of MO structures have been identified in mammalian milk. Mostly described in human milk, the oligosaccharide richness, although less broad, has also been reported for a wide range of mammalian species. The structure of MOs is particularly difficult to report as it results from the combination of 5 monosaccharides linked by various glycosidic bonds forming structurally diverse and complex matrices of linear and branched oligosaccharides. Exploring the literature and extracting relevant information on MO diversity within or across species appears promising to elucidate structure-function role of MOs. Currently, given the complexity of these molecules, the main issues in exploring literature to extract relevant information on MO diversity within or across species relate to the heterogeneity in the way authors refer to these molecules. Herein, we provide a thesaurus (MilkOligoThesaurus) including the names and synonyms of MOs collected from key selected articles on mammalian milk analyses. MilkOligoThesaurus gathers the names of the MOs with a complete description of their monosaccharide composition and structures. When available, each unique MO molecule is linked to its ID from the NCBI PubChem and ChEBI databases. MilkOligoThesaurus is provided in a tabular format. It gathers 245 unique oligosaccharide structures described by 22 features (columns) including the name of the molecule, its abbreviation, the chemical database IDs if available, the monosaccharide composition, chemical information (molecular formula, monoisotopic mass), synonyms, its formula in condensed form, and in abbreviated condensed form, the abbreviated systematic name, the systematic name, the isomer group, and scientific article sources. MilkOligoThesaurus is also provided in the SKOS (Simple Knowledge Organization System) format. This thesaurus is a valuable resource gathering MO naming variations that are not found elsewhere for (i) Text and Data Mining to enable automatic annotation and rapid extraction of milk oligosaccharide data from scientific papers; (ii) biology researchers aiming to search for or decipher the structure of milk oligosaccharides based on any of their names, abbreviations or monosaccharide compositions and linkages.

6.
PLoS One ; 18(1): e0272473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662691

RESUMEN

The dramatic increase in the number of microbe descriptions in databases, reports, and papers presents a two-fold challenge for accessing the information: integration of heterogeneous data in a standard ontology-based representation and normalization of the textual descriptions by semantic analysis. Recent text mining methods offer powerful ways to extract textual information and generate ontology-based representation. This paper describes the design of the Omnicrobe application that gathers comprehensive information on habitats, phenotypes, and usages of microbes from scientific sources of high interest to the microbiology community. The Omnicrobe database contains around 1 million descriptions of microbe properties. These descriptions are created by analyzing and combining six information sources of various kinds, i.e. biological resource catalogs, sequence databases and scientific literature. The microbe properties are indexed by the Ontobiotope ontology and their taxa are indexed by an extended version of the taxonomy maintained by the National Center for Biotechnology Information. The Omnicrobe application covers all domains of microbiology. With simple or rich ontology-based queries, it provides easy-to-use support in the resolution of scientific questions related to the habitats, phenotypes, and uses of microbes. We illustrate the potential of Omnicrobe with a use case from the food innovation domain.


Asunto(s)
Minería de Datos , Ecosistema , Minería de Datos/métodos , Bases de Datos Factuales , Publicaciones , Fenotipo
7.
BMC Bioinformatics ; 13 Suppl 11: S3, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22759457

RESUMEN

BACKGROUND: We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. RESULTS: Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. CONCLUSIONS: The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.


Asunto(s)
Bacterias/genética , Genes Bacterianos , Almacenamiento y Recuperación de la Información , Epistasis Genética , Humanos , PubMed , Terminología como Asunto
8.
Database (Oxford) ; 20222022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36006843

RESUMEN

Collecting relations between chemicals and drugs is crucial in biomedical research. The pre-trained transformer model, e.g. Bidirectional Encoder Representations from Transformers (BERT), is shown to have limitations on biomedical texts; more specifically, the lack of annotated data makes relation extraction (RE) from biomedical texts very challenging. In this paper, we hypothesize that enriching a pre-trained transformer model with syntactic information may help improve its performance on chemical-drug RE tasks. For this purpose, we propose three syntax-enhanced models based on the domain-specific BioBERT model: Chunking-Enhanced-BioBERT and Constituency-Tree-BioBERT in which constituency information is integrated and a Multi-Task-Learning framework Multi-Task-Syntactic (MTS)-BioBERT in which syntactic information is injected implicitly by adding syntax-related tasks as training objectives. Besides, we test an existing model Late-Fusion which is enhanced by syntactic dependency information and build ensemble systems combining syntax-enhanced models and non-syntax-enhanced models. Experiments are conducted on the BioCreative VII DrugProt corpus, a manually annotated corpus for the development and evaluation of RE systems. Our results reveal that syntax-enhanced models in general degrade the performance of BioBERT in the scenario of biomedical RE but improve the performance when the subject-object distance of candidate semantic relation is long. We also explore the impact of quality of dependency parses. [Our code is available at: https://github.com/Maple177/syntax-enhanced-RE/tree/drugprot (for only MTS-BioBERT); https://github.com/Maple177/drugprot-relation-extraction (for the rest of experiments)] Database URL https://github.com/Maple177/drugprot-relation-extraction.


Asunto(s)
Investigación Biomédica , Minería de Datos , Minería de Datos/métodos , Bases de Datos Factuales , Procesamiento de Lenguaje Natural , Semántica
9.
Genomics Inform ; 18(2): e14, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32634868

RESUMEN

Phenotyping is a major issue for wheat agriculture to meet the challenges of adaptation of wheat varieties to climate change and chemical input reduction in crop. The need to improve the reuse of observations and experimental data has led to the creation of reference ontologies to standardize descriptions of phenotypes and to facilitate their comparison. The scientific literature is largely under-exploited, although extremely rich in phenotype descriptions associated with cultivars and genetic information. In this paper we propose the Wheat Trait Ontology (WTO) that is suitable for the extraction and management of scientific information from scientific papers, and its combination with data from genomic and experimental databases. We describe the principles of WTO construction and show examples of WTO use for the extraction and management of phenotype descriptions obtained from scientific documents.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda