Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Immunology ; 172(4): 653-668, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38786548

RESUMEN

The mechanisms underlying the development of steroid resistance in asthma remain unclear. To establish whether as well as the mechanisms by which the activation of Janus kinases (JAKs) is involved in the development of steroid resistance in asthma, murine steroid-resistant models of the proliferation of group 2 innate lymphoid cells (ILC2s) in vitro and asthmatic airway inflammation in vivo were analysed. ILC2s in the lungs of BALB/c mice were sorted and then incubated with IL-33, thymic stromal lymphopoietin (TSLP), and/or IL-7 with or without dexamethasone (10 nM), the pan-JAK inhibitor, delgocitinib (1-10 000 nM), and/or the Bcl-xL inhibitor, navitoclax (1-100 nM), followed by the detection of viable and apoptotic cells. The anti-apoptotic factor, Bcl-xL was detected in ILC2s by flow cytometry. As a steroid-resistant asthma model, ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at a high dose of 500 µg four times. Dexamethasone (1 mg/kg, i.p.), delgocitinib (3-30 mg/kg, p.o.), or navitoclax (30 mg/kg, p.o.) was administered during the challenges. Cellular infiltration into the lungs was analysed by flow cytometry. Airway remodelling was histologically evaluated. The following results were obtained. (1) Cell proliferation concomitant with a decrease in apoptotic cells was induced when ILC2s were cultured with TSLP and/or IL-7, and was potently inhibited by dexamethasone. In contrast, when the culture with TSLP and IL-7 was performed in the presence of IL-33, the proliferative response exhibited steroid resistance. Steroid-resistant ILC2 proliferation was suppressed by delgocitinib in a concentration-dependent manner. (2) The culture with IL-33, TSLP, and IL-7 induced the overexpression of Bcl-xL, which was clearly inhibited by delgocitinib, but not by dexamethasone. When ILC2s were treated with navitoclax, insensitivity to dexamethasone was significantly cancelled. (3) The development of airway remodelling and the infiltration of ILC2s into the lungs in the asthma model were not suppressed by dexamethasone, but were dose-dependently inhibited by delgocitinib. Combination treatment with dexamethasone and either delgocitinib or navitoclax synergistically suppressed these responses. Therefore, JAKs appear to play significant roles in the induction of steroid resistance by up-regulating Bcl-xL in ILC2s. The inhibition of JAKs and Bcl-xL has potential as pharmacotherapy for steroid-resistant asthma, particularly that mediated by ILC2s.


Asunto(s)
Asma , Dexametasona , Resistencia a Medicamentos , Inmunidad Innata , Quinasas Janus , Linfocitos , Ratones Endogámicos BALB C , Proteína bcl-X , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Asma/metabolismo , Proteína bcl-X/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/efectos de los fármacos , Ratones , Dexametasona/farmacología , Dexametasona/uso terapéutico , Inmunidad Innata/efectos de los fármacos , Quinasas Janus/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/efectos de los fármacos , Femenino , Citocinas/metabolismo , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Interleucina-33/metabolismo , Linfopoyetina del Estroma Tímico , Sulfonamidas/farmacología
2.
Biol Pharm Bull ; 47(1): 227-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246609

RESUMEN

Between 5 and 10% of asthma patients do not respond to glucocorticoid therapy. Experimental animal models are indispensable for investigating the pathogenesis of steroid-resistant asthma; however, the majority of murine asthma models respond well to glucocorticoids. We previously reported that multiple intratracheal administration of ovalbumin (OVA) at a high dose (500 µg/animal) induced steroid-insensitive airway eosinophilia and remodeling with lung fibrosis, whereas a low dose (5 µg/animal) caused steroid-sensitive responses. The aims of the present study were as follows: 1) to clarify whether airway hyperresponsiveness (AHR) in the two models is also insensitive and sensitive to a glucocorticoid, respectively, and 2) to identify steroid-insensitive genes encoding extracellular matrix (ECM) components and pro-fibrotic factors in the lung. In comparisons with non-challenged group, the 5- and 500-µg OVA groups both exhibited AHR to methacholine. Daily intraperitoneal treatment with dexamethasone (1 mg/kg) significantly suppressed the development of AHR in the 5-µg OVA group, but not in the 500-µg OVA group. Among genes encoding ECM components and pro-fibrotic factors, increased gene expressions of fibronectin and collagen types I, III, and IV as ECM components as well as 7 matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, transforming growth factor-ß1, and activin A/B as pro-fibrotic factors were insensitive to dexamethasone in the 500-µg OVA group, but were sensitive in the 5-µg OVA group. In conclusion, steroid-insensitive AHR developed in the 500-µg OVA group and steroid-insensitive genes encoding ECM components and pro-fibrotic factors were identified. Drugs targeting these molecules have potential in the treatment of steroid-resistant asthma.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Humanos , Animales , Ratones , Glucocorticoides , Inhibidor Tisular de Metaloproteinasa-1 , Asma/tratamiento farmacológico , Asma/genética , Esteroides , Ovalbúmina , Pulmón , Matriz Extracelular , Expresión Génica , Dexametasona/farmacología , Dexametasona/uso terapéutico
3.
FASEB J ; 35(2): e21287, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33423335

RESUMEN

Regulation of sphingolipid metabolism plays a role in cellular homeostasis, and dysregulation of these pathways is involved in cancer progression. Previously, our reports identified ceramide as an anti-metastatic lipid. In the present study, we investigated the biochemical alterations in ceramide-centered metabolism of sphingolipids that were associated with metastatic potential. We established metastasis-prone sublines of SKOV3 ovarian cancer cells using an in vivo selection method. These cells showed decreases in ceramide levels and ceramide synthase (CerS) 2 expression. Moreover, CerS2 downregulation in ovarian cancer cells promoted metastasis in vivo and potentiated cell motility and invasiveness. Moreover, CerS2 knock-in suppressed the formation of lamellipodia required for cell motility in this cell line. In order to define specific roles of ceramide species in cell motility controlled by CerS2, the effect of exogenous long- and very long-chain ceramide species on the formation of lamellipodia was evaluated. Treatment with distinct ceramides increased cellular ceramides and had inhibitory effects on the formation of lamellipodia. Interestingly, blocking the recycling pathway of ceramides by a CerS inhibitor was ineffective in the suppression of exogenous C24:1 -ceramide for the formation of lamellipodia. These results suggested that C24:1 -ceramide, a CerS2 metabolite, predominantly suppresses the formation of lamellipodia without the requirement for deacylation/reacylation. Moreover, knockdown of neutral ceramidase suppressed the formation of lamellipodia concomitant with upregulation of C24:1 -ceramide. Collectively, the CerS2-C24:1 -ceramide axis, which may be countered by neutral ceramidase, is suggested to limit cell motility and metastatic potential. These findings may provide insights that lead to further development of ceramide-based therapy and biomarkers for metastatic ovarian cancer.


Asunto(s)
Movimiento Celular , Ceramidas/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Ováricas/metabolismo , Seudópodos/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Ceramidas/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Seudópodos/efectos de los fármacos , Esfingosina N-Aciltransferasa/antagonistas & inhibidores , Esfingosina N-Aciltransferasa/genética , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética
4.
Inflamm Res ; 70(5): 581-589, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33837438

RESUMEN

OBJECTIVE: At least 3 years of sublingual immunotherapy (SLIT) is required to achieve long-term clinical tolerance for allergens. However, immunological changes with more than 3 years of SLIT have not yet been elucidated in detail. The present study investigated whether the numbers of regulatory T (Treg) cells and regulatory B (Breg) cells increased with 4 years of SLIT and if these increases correlated with clinical effects for pollinosis. METHODS: Seven Japanese cedar pollinosis patients received SLIT in 2014 or 2015 and continued treatment until May 2019. In May 2017 and May 2019, peripheral blood mononuclear cells (PBMCs) were collected from the patients, and analyzed by flow cytometer. RESULTS: (1) The visual analogue scale (VAS) was significantly higher in 2019 than in 2017. (2) The percentages of Foxp3+ Treg cells, type 1 regulatory T (Tr1) cells, and Breg cells in PBMCs were significantly higher in 2019 than in 2017. (3) The percentage of Foxp3+ Treg cells in PBMCs positively correlated with VAS, whereas those of Tr1 cells and Breg cells did not. CONCLUSIONS: These results suggest that 4 years of SLIT is needed to achieve sustained increases in Foxp3+ Treg cells, which are closely associated with the efficacy of SLIT.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Rinitis Alérgica Estacional/terapia , Inmunoterapia Sublingual , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Alérgenos/inmunología , Linfocitos B Reguladores/inmunología , Cryptomeria/inmunología , Femenino , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Polen/inmunología , Rinitis Alérgica Estacional/sangre , Rinitis Alérgica Estacional/inmunología
5.
J Pharmacol Sci ; 146(2): 88-97, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33941325

RESUMEN

We investigate as yet an unidentified role of NOX1, a non-phagocytic isoform of the superoxide-generating NADPH oxidase, in immune responses using Nox1-knockout mice (Nox1-KO). The transcripts of NOX1 was expressed in lymphoid tissues, including the spleen, thymus, bone marrow, and inguinal lymphoid nodes. When antibody production after ovalbumin (OVA) immunization was examined, no significant differences were observed in serum anti-OVA IgG levels between wild-type mice (WT) and Nox1-KO. In the experimental asthma, the infiltration of eosinophils and the Th2 cytokine response after the induction of asthma with OVA were similar between the two genotypes. However, the severity and incidence of experimental collagen-induced arthritis (CIA) following the administration of a low dose of endotoxin (LPS) were significantly lower in Nox1-KO. While neither serum levels of autoantibodies nor in vitro cytokine responses were affected by Nox1 deficiency, NOX1 mRNA levels in the spleen significantly increased after the LPS challenge. Among the spleen cells, remarkable LPS-induced upregulation of NOX1 was demonstrated in both CD11b+ monocytes/macrophages and CD11c+ dendritic cells, suggesting that LPS-inducible NOX1 in monocytes/macrophages/dendritic cells may modulate the development of experimental CIA. Therapeutic targeting of NOX1 may therefore control the onset and/or severity of arthritis which is exacerbated by bacterial infection.


Asunto(s)
Artritis Experimental/etiología , Colágeno/efectos adversos , Endotoxinas/efectos adversos , NADPH Oxidasa 1/fisiología , Animales , Células Cultivadas , Células Dendríticas , Progresión de la Enfermedad , Macrófagos , Masculino , Ratones Noqueados , Monocitos , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , ARN Mensajero/metabolismo , Bazo/citología , Bazo/metabolismo
6.
Chem Pharm Bull (Tokyo) ; 69(9): 905-912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34470955

RESUMEN

Herein, we describe the design and synthesis of cimetidine analogs, as well as their inhibitory activity toward the human multidrug and toxin extrusion transporter 1 (hMATE1), which is related to nephrotoxicity of drugs. Cimetidine is the histamine H2-receptor antagonist, but also inhibits hMATE1, which is known to cause renal impairment. We designed and synthesized cimetidine analogs to evaluate hMATE1 inhibitory activity to reveal whether the analogs could reduce the inhibition of hMATE1. The results showed that all analogs with an unsubstituted guanidino group exhibited hMATE1 inhibitory activity. On the other hand, there was a clear difference in the hMATE1 inhibitory activity for the other compounds. That is, compounds with a methylimidazole ring exhibited hMATE1 inhibition, while compounds with a phenyl ring did not. The results suggest that the ability to form hydrogen bonds at the azole moiety is strongly involved in the hMATE1 inhibition.


Asunto(s)
Azoles/farmacología , Cimetidina/farmacología , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Azoles/química , Cimetidina/síntesis química , Cimetidina/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
7.
Biol Pharm Bull ; 43(1): 31-35, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31902928

RESUMEN

Asthma patients are classified by phenotype and endotype. Although symptoms in most asthma patients are well controlled by glucocorticoid treatment, certain populations of severe eosinophilic asthma patients in T-helper 2 (Th2)/type 2 asthma and neutrophilic asthma patients in non-Th2/type 2 asthma show insensitivity to inhaled or oral glucocorticoid therapy. In some cases of severe eosinophilic asthma, eosinophils remain in the lungs despite glucocorticoid therapy. It was reported that interleukin (IL)-33-induced activation of type 2 innate lymphoid cells (ILC2) was resistant to glucocorticoid treatment in certain allergic conditions. Regarding neutrophilic airway inflammation in steroid-resistant asthma, IL-17 derived from Th17 cells and IL-8 and tumor necrosis factor-α derived mainly from macrophages were reported to be involved in the pathogenesis. Recently, "NETosis," a specific cell death of neutrophils, has been reported to be involved in asthmatic airway inflammation. When NETosis is induced in asthma, aggravation of inflammation and delay of tissue repair could occur, suggesting that NETosis may be associated with the development of steroid-resistant asthma. This article reviews the pathogenesis of steroid-resistant asthma by focusing mainly on neutrophils.


Asunto(s)
Asma/inmunología , Resistencia a Medicamentos/inmunología , Neutrófilos/inmunología , Animales , Asma/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Humanos , Inflamación/inmunología , Receptores de Glucocorticoides/inmunología , Células Th2/inmunología
8.
J Pharmacol Sci ; 141(4): 139-145, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31744690

RESUMEN

Type 1 regulatory T (Tr1) cells are CD4+ T cells that produce a large amount of IL-10, an anti-inflammatory cytokine. However, it has not been fully elucidated whether Tr1 cells suppress allergic asthma. In this study, the effects of adoptive transfer of in vitro-induced Tr1 cells on allergic asthma were evaluated. Splenocytes from ovalbumin (OVA)-sensitized BALB/c mice were cultured with OVA, IL-21, IL-27, and TGF-ß. After culture, IL-10-producing CD4+ T cells were isolated by Dynabeads mouse CD4 and IL-10 secretion assay, and analyzed by flow cytometry. Purified Tr1 cells (IL-10+ CD4+ T cells) were intravenously injected into OVA-sensitized BALB/c mice. The recipient mice were intratracheally challenged with OVA. Airway hyperresponsiveness to methacholine was assessed by the forced oscillation technique, followed by bronchoalveolar lavage (BAL). Almost all of the induced IL-10-producing CD4+ T cells were negative for interferon-γ, IL-4, IL-17A, and forkhead box P3, suggesting that the cells were Tr1 cells. The adoptive transfer of Tr1 cells significantly suppressed the development of airway hyperresponsiveness, and increases in IL-5, eosinophils, and neutrophils in BAL fluid. In conclusion, we demonstrated that Tr1 cells suppressed allergic asthma in mice.


Asunto(s)
Traslado Adoptivo , Antiinflamatorios/metabolismo , Ovalbúmina/metabolismo , Hipersensibilidad Respiratoria/terapia , Linfocitos T Reguladores/metabolismo , Animales , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Resultado del Tratamiento
9.
Biopharm Drug Dispos ; 40(7): 225-233, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31215040

RESUMEN

The study examined the effect of doxorubicin (DOX) on the hepatic expression of CYP2C and its activity for metabolizing tolbutamide (TB), a specific CYP2C substrate, in rats and whether the pharmacokinetics of tolbutamide were altered by doxorubicin exposure. The expression level of hepatic CYP2C11 was depressed 1 day after doxorubicin administration (day 1), and this effect on CYP2C11 was augmented on day 4. However, the expression level of hepatic CYP2C6 remained unchanged. The activity of tolbutamide 4-hydroxylation in hepatic microsomes was decreased with time following doxorubicin administration. Regarding the enzyme kinetic parameters for tolbutamide 4-hydroxylation on day 4, the maximum velocity (Vmax ) was significantly lower in the DOX group than that in the control group, while the Michaelis constant (Km ) was unaffected. On pharmacokinetic examination, the total clearance (CLtot ) of tolbutamide on day 4 was increased, despite the decreased metabolic capacity. On the other hand, the serum unbound fraction (fu ) of tolbutamide was elevated with a reduced serum albumin concentration in the DOX group. Contrary to CLtot , CLtot /fu , a parameter approximated to the hepatic intrinsic clearance of unbound tolbutamide, was estimated to be significantly reduced in the DOX group. These findings indicate that the metabolic capacity of CYP2C11 in the liver is depressed time-dependently by down-regulation after doxorubicin exposure in rats, and that the decreased enzyme activity of TB 4-hydroxylation in hepatic microsomes reflects the pharmacokinetic change of unbound tolbutamide, not total tolbutamide, in serum.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Hipoglucemiantes/farmacocinética , Tolbutamida/farmacocinética , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Familia 2 del Citocromo P450/metabolismo , Interacciones Farmacológicas , Hidroxilación/efectos de los fármacos , Hipoglucemiantes/sangre , Masculino , Tasa de Depuración Metabólica/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas Sprague-Dawley , Albúmina Sérica/metabolismo , Esteroide 16-alfa-Hidroxilasa/metabolismo , Tolbutamida/sangre
10.
Immunology ; 155(1): 99-111, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29569388

RESUMEN

Although interleukin (IL)-33 is a candidate for the aggravation of asthma, the mechanisms underlying antigen-specific IL-33 production in the lung are unclear. Therefore, we analysed the mechanisms in mice. Intra-tracheal administration of ovalbumin (OVA) evoked increases in IL-33 and IL-33 mRNA in the lungs of both non-sensitized and OVA-sensitized mice, and the increases in the sensitized mice were significantly higher than in the non-sensitized mice. However, intra-tracheal administration of bovine serum albumin did not increase the IL-33 level in the OVA-sensitized mice. Depletion of neither mast cells/basophils nor CD4+ cells abolished the OVA-induced IL-33 production in sensitized mice, suggesting that the antigen recognition leading to the IL-33 production was not related with either antigen-specific IgE-bearing mast cells/basophils or memory CD4+ Th2 cells. When a fluorogenic substrate-labelled OVA (DQ-OVA) was intra-tracheally administered, the lung cells of sensitized mice incorporated more DQ-OVA than those of non-sensitized mice. The lung cells incorporating DQ-OVA included B-cells and alveolar macrophages. The allergic IL-33 production was significantly reduced by treatment with anti-FcγRII/III mAb. Depletion of alveolar macrophages by clodronate liposomes significantly suppressed the allergic IL-33 production, whereas depletion of B-cells by anti-CD20 mAb did not. These results suggest that the administered OVA in the lung bound antigen-specific IgG Ab, and then alveolar macrophages incorporated the immune complex through FcγRII/III on the cell surface, resulting in IL-33 production in sensitized mice. The mechanisms underlying the antigen-specific IL-33 production may aid in development of new pharmacotherapies.


Asunto(s)
Interleucina-33/biosíntesis , Macrófagos Alveolares/inmunología , Receptores de IgG/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Reacciones Antígeno-Anticuerpo , Interleucina-33/inmunología , Macrófagos Alveolares/citología , Ratones , Ratones Endogámicos BALB C
11.
Exp Dermatol ; 27(8): 837-840, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29392772

RESUMEN

Skin barrier dysfunction has a key role in the development of atopic dermatitis (AD). Covalently bound ceramides (Cer), which are essential lipids for permeability barrier homoeostasis, are reportedly decreased in the stratum corneum (SC) of AD patients. Hairless mice fed a special diet develop pruritic dermatitis resembling human AD. Our previous study found that oral administration of the n-3 polyunsaturated fatty acid α-linolenic acid ameliorated skin barrier dysfunction in AD mice with concomitant increase in serum eicosapentaenoic acid (EPA). In this study, we examined the effects of EPA ethyl ester (EPA-E) on diet-induced AD in hairless mice. Oral administration of EPA-E ameliorated skin barrier dysfunction and pruritus in AD mice. In the SC of AD mice, covalently bound Cer were markedly diminished. EPA-E administration restored the lack of bound Cer. Our findings imply the possible therapeutic clinical application of EPA-E in the treatment of human AD.


Asunto(s)
Ceramidas/metabolismo , Dermatitis Atópica/metabolismo , Dermatitis Atópica/terapia , Ácido Eicosapentaenoico/análogos & derivados , Epidermis/efectos de los fármacos , Administración Oral , Animales , Disponibilidad Biológica , Dieta , Modelos Animales de Enfermedad , Eccema/metabolismo , Ácido Eicosapentaenoico/farmacología , Epidermis/metabolismo , Femenino , Ratones , Ratones Pelados , Permeabilidad , Prurito/metabolismo , Piel/metabolismo
13.
Plant Cell Rep ; 37(3): 411-424, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29177844

RESUMEN

KEY MESSAGE: Fra a 1 protein in strawberry causes oral allergic syndrome. Over 39 Fra a 1 paralogs have been identified in strawberry genome. Fra a 1.01 is major accumulating protein in edible organs. Strawberry fruits contain allergenic proteins that cause oral allergic syndrome. The hypothesized major allergen is Fra a 1, an ortholog of the birch pollen allergen protein Bet v 1. We organized Fra a 1 genes and analyzed their localizations at the transcriptional and translational levels. In total, 15 new Fra a 1 proteins were identified from the genomic database, increasing the total number of Fra a 1 to 30 proteins encoded by 39 genes. Fra a 1.02 was mostly expressed in receptacles, and Fra a 1.01 in achenes, when analyzed by RNA sequencing. Immunoblotting showed that the Fra a 1.01 protein was broadly accumulated in strawberry organs, while the Fra a 1.02 protein was mostly expressed in receptacles. Recombinant Fra a 1.01 strongly reacted with human IgE. The mRNA and protein expression levels of Fra a 1 did not correlate, indicating the importance of protein levels when evaluating the abundance of allergens in strawberry. Based on the localizations, accumulation levels and reactivity to human IgE, we determined that Fra a 1.01 was the most important allergen, followed by Fra a 1.02, and then other Fra a 1 proteins. The information obtained here will be useful for selecting the target Fra a 1 paralogs when breeding hypoallergenic strawberry.


Asunto(s)
Alérgenos/genética , Antígenos de Plantas/genética , Fragaria/genética , Frutas/genética , Proteínas de Plantas/genética , Alérgenos/inmunología , Alérgenos/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Plantas/clasificación , Antígenos de Plantas/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cobayas , Humanos , Sueros Inmunes/inmunología , Immunoblotting , Inmunoglobulina E/inmunología , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido
14.
J Immunol ; 192(4): 1372-84, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24446518

RESUMEN

Neutrophilic airway inflammation is a hallmark of patients with severe asthma. Although we have reported that both IL-33 and IL-17A contributed to IgE-mediated neutrophilic inflammation in mice, the relationship remains unclear. In this article, we examined how IL-17A modifies IL-33-induced neutrophilic inflammation and airway hyperresponsiveness (AHR). IL-33 was intratracheally administered to BALB/c mice on days 0-2; furthermore, on day 7, the effect of the combination of IL-33 and IL-17A was evaluated. Compared with IL-33 or IL-17A alone, the combination exacerbated neutrophilic inflammation and AHR, associated with more increased levels of lung glutamic acid-leucine-arginine(+) CXC chemokines, including CXCL1, CXCL2, and CXCL5, and infiltration by alveolar macrophages expressing CXCR2. Treatment with anti-CXCR2 mAb or depletion of alveolar macrophages repressed neutrophilic inflammation and AHR; in addition, depletion of neutrophils suppressed AHR. These findings prompted us to examine the role of CXCR2 in IgE-sensitized mice; a single treatment with anti-CXCR2 mAb in the seventh Ag challenge inhibited late-phase airway obstruction, AHR, and neutrophilic inflammation. In addition to inhibition, multiple treatments during the fourth to seventh challenge attenuated early-phase airway obstruction, eosinophilic inflammation, and goblet cell hyperplasia associated with the reduction of Th2 cytokine production, including IL-4, IL-5, and IL-13. Collectively, IL-33 cooperated with IL-17A to exacerbate AHR by enhancing neutrophilic inflammation via CXCR2 signaling; furthermore, CXCR2 signaling derived Th2 responses. We thus suggest the underlying mechanisms of IL-33 and IL-17A in allergic asthma and CXCR2 as potential therapeutic targets for the disease.


Asunto(s)
Asma/inmunología , Interleucina-17/metabolismo , Interleucinas/metabolismo , Pulmón/inmunología , Neutrófilos/inmunología , Receptores de Interleucina-8B/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Hiperreactividad Bronquial/inmunología , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Quimiocina CXCL5/metabolismo , Eosinófilos/inmunología , Células Caliciformes/inmunología , Inmunoglobulina E , Inflamación/inmunología , Interleucina-13/biosíntesis , Interleucina-13/metabolismo , Interleucina-33 , Interleucina-4/biosíntesis , Interleucina-4/metabolismo , Interleucina-5/biosíntesis , Interleucina-5/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Receptores de Interleucina-8B/inmunología , Transducción de Señal , Células Th2/inmunología
15.
Immunology ; 144(1): 107-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24995892

RESUMEN

IgE is known to enhance some antibody responses to specific antigens, but whether this contributes to allergic asthma remains unclear. We have previously found that repeated antigen challenges in mice sensitized with antigen-specific IgE monoclonal antibody (mAb) exacerbated airway inflammation and remodelling accompanied by increased levels of endogenous antigen-specific IgE and IgG1. Here, we investigated whether IgE/antigen-mediated enhancement of endogenous IgE production contributes to the exacerbation of airway inflammation and remodelling. BALB/c mice passively sensitized with ovalbumin (OVA) -specific IgE mAb were challenged with OVA intratracheally seven times; anti-IgE mAb was intraperitoneally administered 1 day before the fourth challenge. Treatment with anti-IgE mAb inhibited the increased level of endogenous OVA-specific IgE in serum, but not OVA-specific IgG1, and a biphasic increase in airway resistance at the fourth challenge. Furthermore, a biphasic increase in airway resistance, airway hyper-responsiveness to methacholine, OVA-specific IgE and IgG1 production, and infiltrations by neutrophils and eosinophils in the lungs at the seventh challenge were suppressed by treatment; airway remodelling, such as goblet cell hyperplasia and sub-epithelial fibrosis, was also reduced. In addition, the production of interleukin-17A, interleukin-33 and CXCL1 in the lungs related to these IgE-mediated responses was decreased by treatment. Collectively, we found that the mechanism leading to the exacerbation of allergic asthma is closely related to IgE/antigen-mediated enhancement of IgE production, suggesting that this may create a vicious circle leading to the chronic status in asthmatic patients having levels of antigen-specific IgE ready to form complexes with antigen.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Asma/inmunología , Inmunoglobulina E/inmunología , Pulmón/inmunología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Monoclonales de Origen Murino/farmacología , Antígenos/inmunología , Antígenos/toxicidad , Asma/patología , Citocinas/inmunología , Inmunoglobulina G/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Ovalbúmina/toxicidad
16.
Immunology ; 146(4): 568-81, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26310839

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with elevated levels of allergen-specific IgE. Although thymic stromal lymphopoietin (TSLP) and interleukin-17A (IL-17A) have been considered as important factors in allergic diseases, their relationships in AD have not been fully defined. Here, we show the contribution of TSLP-induced IL-17A responses to IgE-mediated AD-like skin lesions. BALB/c mice passively sensitized by intraperitoneal injections of ovalbumin (OVA)-specific IgE monoclonal antibody (mAb) were challenged with OVA applied to the skin six times. Treatment with anti-TSLP mAb during the second to sixth challenges inhibited IgE-mediated AD-like skin lesions and IL-17A production in lymph nodes. Furthermore, the increased number of IL-17A-producing CD4(+) and γδ T cells in lymph nodes and neutrophilic inflammation in the skin were reduced by anti-TSLP mAb. These findings prompted us to examine the roles of IL-17A. Treatment with anti-IL-17A mAb suppressed the AD-like skin lesions and neutrophilic inflammation; anti-Gr-1 mAb also inhibited them. Furthermore, treatment with CXCR2 antagonist reduced the AD-like skin lesions and neutrophilic inflammation accompanied by the reduction of IL-17A production; the increased CXCR2 expression in the epidermal cells was suppressed by anti-TSLP mAb. Meanwhile, these treatments, except for anti-Gr-1 mAb, inhibited the increased mast cell accumulation in the skin. Collectively, the mechanism of IgE mediating IL-17A-producing CD4(+) and γδ T cells through TSLP by repeated antigen challenges is involved in AD-like skin lesions associated with skin inflammation, such as neutrophil and mast cell accumulation; TSLP may regulate CXCR2 signalling-induced IL-17A production.


Asunto(s)
Citocinas/metabolismo , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Inmunoglobulina E/inmunología , Interleucina-17/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Citocinas/sangre , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Epidermis/inmunología , Epidermis/metabolismo , Epidermis/patología , Inmunofenotipificación , Masculino , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Interleucina-8B/antagonistas & inhibidores , Receptores de Interleucina-8B/metabolismo , Transducción de Señal , Linfopoyetina del Estroma Tímico
17.
Exp Dermatol ; 24(2): 108-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25387853

RESUMEN

Hairless mice fed with a special diet (named HR-AD) show atopic dermatitis (AD)-like pruritic skin inflammation that is almost completely resolved with the supplementation of an unsaturated fatty acid (UFA), the linoleic acid (LA). This suggests that the dietary deficiency of LA is the key cause of this dermatitis. However, because there is no appropriate control diet for HR-AD, the involvement of other dietary ingredients cannot be ruled out. Furthermore, it has not yet been tested whether only UFA deficiency can cause such AD-like pruritus. In this study, using semi-purified custom diets, we attempted to reproduce this syndrome. Four-week-old hairless mice were maintained on a widely used standard diet American Institute of Nutrition-76A (AIN-76A), its modifications, or HR-AD. Several modifications of fat and carbohydrate components revealed that dietary deficiency of both UFAs and cornstarch was required to induce severe skin barrier dysfunction as typically occurred in HR-AD-fed mice. An UFA- and cornstarch-deficient diet caused severe AD-like pruritus comparable to HR-AD, despite weak Th2 immune responses and absence of immunoglobulin E production. On the other hand, a diet lacking UFAs but containing cornstarch significantly alleviated the development of pruritic dermatitis. Furthermore, the supplementation of wheat starch similarly improved skin barrier function. In conclusion, this study showed that a lack of certain starches might also be the cause of diet-induced AD. Our findings could help to reproduce the diet-induced AD itch model and also provide evidence that certain starches can have protective and ameliorative effects on AD-like pruritus.


Asunto(s)
Dermatitis Atópica/fisiopatología , Dieta , Ácidos Grasos Insaturados/química , Prurito/fisiopatología , Almidón/química , Animales , Carbohidratos/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina E/sangre , Inflamación , Ratones , Ratones Pelados , Prurito/etiología , ARN Mensajero/metabolismo , Piel/metabolismo , Piel/patología , Piel/fisiopatología , Cicatrización de Heridas
18.
Microbiol Immunol ; 59(11): 690-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26400839

RESUMEN

Previous studies using experimental animal models have reported the beneficial effects of probiotics on allergic responses; however, their long-term effects on allergic nasal symptoms in clinical settings have not yet been elucidated in detail. In the present study, a guinea pig allergic rhinitis model involving repeated inhalation challenges with a natural allergen, Japanese cedar pollen, was used to examine the longitudinal effects of Bifidobacterium bifidum G9-1 (BBG9-1) on allergic nasal symptoms. BBG9-1 was administered orally once a day. Amelioration of nasal blockage was consistently observed throughout the experimental period in the BBG9-1-treated group. Although challenge-induced sneezing was not significantly inhibited in the BBG9-1-treated group, prolonged treatment with BBG9-1 slightly reduced the frequency of sneezing. Antigen-specific IgE antibody production was also not inhibited in the BBG9-1-treated group. Increases in the numbers of eosinophils and neutrophils in nasal cavity lavage fluid collected after pollen challenge were almost completely suppressed by BBG9-1 treatment, whereas those in mast cell mediators, histamine and cysteinyl leukotrienes were not. In contrast, increases in the levels of nitric oxide metabolites were potently suppressed. Furthermore, prolonged BBG9-1 treatment markedly suppressed exogenous leukotriene D4 -induced nasal blockage. Thus, prolonged oral administration of BBG9-1 suppresses Japanese cedar pollen-induced allergic nasal symptoms. The inhibitory mechanisms responsible may involve reductions in the responsiveness of target organs, such as endothelial cells in nasal mucosal blood vessels, to chemical mediators.


Asunto(s)
Bifidobacterium/efectos de los fármacos , Eosinófilos/fisiología , Inmunoglobulina E/biosíntesis , Neutrófilos/fisiología , Rinitis Alérgica/terapia , Administración por Inhalación , Administración Oral , Animales , Cryptomeria , Cobayas , Modelos Animales , Rinitis Alérgica Estacional
20.
Allergol Int ; 64(4): 351-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26433531

RESUMEN

BACKGROUND: The expression and functional role of CysLT2 receptors in asthma have not been clarified. In this study, we evaluated CysLT2 receptors expression, and effects of CysLT2-and CysLT1/2-receptor antagonists on antigen-induced bronchoconstriction using isolated lung tissues from both asthma and non-asthma subjects. METHODS: CysLT1 and CysLT2 receptors expression in asthma and non-asthma lung tissue preparations was examined in immunohistochemistry experiments, and their functional roles in antigen-induced bronchoconstriction were assessed using ONO-6950, a dual CysLT1/2-receptor antagonist, montelukast, a CysLT1 receptor antagonist, and BayCysLT2RA, a CysLT2 receptor-specific antagonist. RESULTS: CysLT1 receptors were expressed on the bronchial smooth muscle and epithelium, and on alveolar leukocytes in 5 in 5 non-asthma subjects and 2 in 2 asthma subjects. On the other hand, although degrees of CysLT2 receptors expression were variable among the 5 non-asthma subjects, the expression in the asthma lung was detected on bronchial smooth muscle, epithelium and alveolar leukocytes in 2 in 2 asthma subjects. In the non-asthma specimens, antagonism of CysLT2 receptors did not affect antigen-induced bronchial contractions, even after pretreatment with the CysLT1-receptor specific antagonist, montelukast. However, in the bronchus isolated from one of the 2 asthma subjects, antagonism of CysLT2 receptors suppressed contractions, and dual antagonism of CysLT1 and CysLT2 receptors resulted in additive inhibitory effect on anaphylactic contractions. CONCLUSIONS: CysLT2 receptors were expressed in lung specimens isolated from asthma subjects. Activation of CysLT2 receptors may contribute to antigen-induced bronchoconstriction in certain asthma population.


Asunto(s)
Asma/metabolismo , Broncoconstricción , Receptores de Leucotrienos/metabolismo , Anciano , Antígenos/inmunología , Asma/diagnóstico , Asma/genética , Broncoconstricción/genética , Broncoconstricción/inmunología , Calcio/metabolismo , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Recuento de Leucocitos , Antagonistas de Leucotrieno/farmacología , Leucotrieno D4/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Receptores de Leucotrienos/genética , Pruebas de Función Respiratoria
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda