RESUMEN
We report a BiFeO3/graphene oxide (BFO/GO) perovskite, synthesized using a CTAB-functionalized glycine combustion route, as a potential material for acetone gas sensing applications. The physicochemical properties of the developed perovskite were analysed using XRD, FE-SEM, TEM, HRTEM, EDAX and XPS. The gas sensing performance was analysed for various test gases, including ethanol, acetone, propanol, ammonia, nitric acid, hydrogen sulphide and trimethylamine at a concentration of 500 ppm. Among the test gases, the developed BFO showed the best selectivity towards acetone, with a response of 61% at an operating temperature of 250 °C. All the GO-loaded BFO samples showed an improved gas sensing performance compared with pristine BFO in terms of sensitivity, the response/recovery times, the transient response curves and the stability. The 1 wt% GO-loaded BiFeO3 sensor showed the highest sensitivity of 89% towards acetone (500 ppm) at an operating temperature of 250 °C. These results show that the developed perovskites have significant potential for use in acetone gas sensing applications.
RESUMEN
Interest in the importance of gas sensing devices has increased significantly due to their critical function in monitoring the environment and controlling pollution, resulting in an increased market demand. The present review explores perovskite La-Fe-O based gas sensors with a special focus on LaFeO3 and evaluates their sensitivity to a diverse range of practical target gases that need to be monitored. An analysis has been conducted to assess different routes not only of synthesizing LaFeO3 material but also of characterization with the targeted use for their gas sensing abilities. Additionally, a comprehensive analysis has been performed to explore the effect of introducing other elements through doping. In view of the LaFeO3 sensing performance, more common gases like acetone, ethanol, methanol, formaldehyde, NO x , and CO2 have been targeted. In addition, a discussion on uncommon gases such as CO, SO2, TEA, C2H5, C6H6, and others is also made to give a complete picture of LaFeO3-based gas sensors. The summary and conclusion section of the study addresses the primary obstacles in the synthesis process, the variables that restrict the sensing capabilities of LaFeO3, and its commercial fulfillment.
RESUMEN
We report citrate gel-assisted autocombusted spinel-type Co2+-substituted NiCuZn ferrites and their electromagnetic properties. Several complementary techniques were used to investigate the influence of Co on structural and electromagnetic properties of Ni0.25-xCoxCu0.20Zn0.55Fe2O4 with x = 0.00-0.25 (step of 0.05). XRD analysis confirmed the highly crystalline single-phase cubic spinel structure with a prominent peak of the (311) plane. FE-SEM analysis showed the loss of porous gel structure (colloidal backbone) due to addition of cobalt into the present ferrite system. The EDAX analysis confirmed the presence of Ni, Cu, Zn, Co, and O in accordance with the relative stoichiometry of Co-substituted NiCuZn ferrite. The electrical resistivity of ferrites is observed to decrease when Co2+ ions are substituted, regardless of AC and DC. The dielectric properties (ε' and εâ³) of ferrites exhibited a consistent decrease as the frequency increased, and this trend persisted even at higher frequencies. VSM analysis showed the normal magnetic hysteresis of the developed ferrite system. At x = 0.05, the saturation magnetization of the ferrite was obtained to be the highest among the other substitution levels of Co. The Curie temperature fell down when there was a higher concentration of cobalt in the ferrite system (x = 0.20). After reaching a specific temperature, the µi values decreased abruptly, with an increase in the temperature. The steady state may be deduced from the fact that the constant real component of the initial permeability, µ', remained unchanged. However, with decreasing frequency, the values of µâ³ decreased dramatically. The present NiCuZn ferrite series displays the enhanced dielectric properties suggesting the capability of potential candidates for microwave absorption applications with enhanced electromagnetic properties.