Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Nature ; 471(7337): 209-11, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21390128

RESUMEN

The El Niño/Southern Oscillation (ENSO) system during the Pliocene warm period (PWP; 3-5 million years ago) may have existed in a permanent El Niño state with a sharply reduced zonal sea surface temperature (SST) gradient in the equatorial Pacific Ocean. This suggests that during the PWP, when global mean temperatures and atmospheric carbon dioxide concentrations were similar to those projected for near-term climate change, ENSO variability--and related global climate teleconnections-could have been radically different from that today. Yet, owing to a lack of observational evidence on seasonal and interannual SST variability from crucial low-latitude sites, this fundamental climate characteristic of the PWP remains controversial. Here we show that permanent El Niño conditions did not exist during the PWP. Our spectral analysis of the δ(18)O SST and salinity proxy, extracted from two 35-year, monthly resolved PWP Porites corals in the Philippines, reveals variability that is similar to present ENSO variation. Although our fossil corals cannot be directly compared with modern ENSO records, two lines of evidence suggest that Philippine corals are appropriate ENSO proxies. First, δ(18)O anomalies from a nearby live Porites coral are correlated with modern records of ENSO variability. Second, negative-δ(18)O events in the fossil corals closely resemble the decreases in δ(18)O seen in the live coral during El Niño events. Prior research advocating a permanent El Niño state may have been limited by the coarse resolution of many SST proxies, whereas our coral-based analysis identifies climate variability at the temporal scale required to resolve ENSO structure firmly.


Asunto(s)
Antozoos , Clima , El Niño Oscilación del Sur/historia , Temperatura , Animales , Antozoos/metabolismo , Atmósfera , Entropía , Fósiles , Historia Antigua , Isótopos de Oxígeno , Océano Pacífico , Filipinas , Salinidad , Estaciones del Año , Agua de Mar/análisis , Factores de Tiempo
2.
Phys Chem Chem Phys ; 18(4): 2690-8, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26726001

RESUMEN

Mg(2+) is considered to play an important role in the formation of calcium carbonate polymorphs; however, how it affects polymorph selection during the early stages of CaCO3 formation is not yet well understood. In the present study, in order to clarify the effect of Mg(2+) on the nucleation of calcium carbonate polymorphs, the stable structures of anhydrous additive-free and Mg-containing calcium carbonate clusters are derived using the anharmonic downward distortion following method, based on quantum chemical calculations. Optimization is performed at the B3LYP/6-31+G(d) level and the solvent effect is induced by the self-consistent reaction field method using the conductor-like polarized continuum calculation model. Calculation results show that incorporating Mg(2+) into clusters can change the clusters' stable configuration. In the case of dimers and trimers, a Mg ion strongly prefers to locate at the centre of the clusters, which suggests that Mg is easy to incorporate into the clusters once it is released from its tight hydration shell. Notably, structures similar to the crystalline phase appear when only four CaCO3 units aggregate into the cluster: in the stable structure of the additive-free CaCO3 tetramer, the arrangement of Ca and CO3 ions is almost the same as that of the calcite structure, while the structure of the Mg-containing CaCO3 tetramer resembles the aragonite structure in the way that CO3 ions are stacked. These results indicate that Mg can play a key role in aragonite formation not only by inhibiting calcite growth but also by directly promoting aragonite nucleation in the early stages of CaCO3 formation.

3.
J Struct Biol ; 180(3): 389-93, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23041294

RESUMEN

The skeletal texture and crystal morphology of the massive reef-building coral Porites lobata were observed from the nano- to micrometer scale using an analytical transmission electron microscope (ATEM). The skeletal texture consists of centers of calcification (COCs) and fiber area. Fiber areas contain bundles of needle-like aragonite crystals that are elongated along the crystallographic c-axis and are several hundred nanometers to one micrometer in width and several micrometers in length. The size distribution of aragonite crystals is relatively homogeneous in the fibers. Growth lines are observed sub-perpendicular to the direction of aragonite growth. These growth lines occur in 1-2 µm intervals and reflect a periodic contrast in the thickness of an ion-spattered sample and pass through the interior of some aragonite crystals. These observations suggest that the medium filled in the calcification space maintains a CaCO3-supersaturated state during fiber growth and that a physical change occurs periodically during the aragonite crystals of the fiber area.


Asunto(s)
Antozoos/anatomía & histología , Calcificación Fisiológica , Carbonato de Calcio/química , Animales , Antozoos/crecimiento & desarrollo , Cristalografía , Microscopía Electrónica de Rastreo
4.
Sci Rep ; 8(1): 15520, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341340

RESUMEN

At ambient pressure, the hydrogen bond in materials such as ice, hydrates, and hydrous minerals that compose the Earth and icy planets generally takes an asymmetric O-H···O configuration. Pressure significantly affects this configuration, and it is predicted to become symmetric, such that the hydrogen is centered between the two oxygen atoms at high pressure. Changes of physical properties of minerals relevant to this symmetrization have been found; however, the atomic configuration around this symmetrization has remained elusive so far. Here we observed the pressure response of the hydrogen bonds in the aluminous hydrous minerals δ-AlOOH and δ-AlOOD by means of a neutron diffraction experiment. We find that the transition from P21nm to Pnnm at 9.0 GPa, accompanied by a change in the axial ratios of δ-AlOOH, corresponds to the disorder of hydrogen bond between two equivalent sites across the center of the O···O line. Symmetrization of the hydrogen bond is observed at 18.1 GPa, which is considerably higher than the disorder pressure. Moreover, there is a significant isotope effect on hydrogen bond geometry and transition pressure. This study indicates that disorder of the hydrogen bond as a precursor of symmetrization may also play an important role in determining the physical properties of minerals such as bulk modulus and seismic wave velocities in the Earth's mantle.

5.
J Phys Chem B ; 109(39): 18226-9, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16853344

RESUMEN

Synchrotron X-ray diffraction measurements confirmed that a new polymorph of FeAlO3 could be synthesized at about 1800 K and 72 GPa. This phase can be indexed on an orthorhombic cell and transforms into the trigonal form on release of pressure. The c/a ratio of about 2.71 of the trigonal phase suggests corundum structure of FeAlO3 rather than LiNbO3 or ilmenite structure. This conclusion also suggests that the high-pressure orthorhombic phase could be the Rh2O3(II) structure rather than the GdFeO3-type perovskite structure.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda