Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36198317

RESUMEN

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Anticuerpos Antivirales , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Emerg Infect Dis ; 30(11): 2343-2351, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39447162

RESUMEN

During the COVID-19 pandemic, widespread school closures were implemented globally based on the assumption that transmission among children in the school environment is common. However, evidence regarding secondary infection rates by school type and level of contact is lacking. Our study estimated the frequency of SARS-CoV-2 infection in school settings by examining the positivity rate according to school type and level of contact by using data from a large-scale school-based PCR project conducted in Okinawa, Japan, during 2021-2022. Our results indicate that, despite detection of numerous positive cases, the average number of secondary infections remained relatively low at ≈0.5 cases across all types of schools. Considering the profound effects of prolonged closures on educational access, balancing public health benefits against potential long-term effects on children is crucial.


Asunto(s)
COVID-19 , SARS-CoV-2 , Instituciones Académicas , Humanos , COVID-19/epidemiología , COVID-19/transmisión , Japón/epidemiología , Niño , Adolescente , Pandemias , Masculino , Femenino
3.
Microbiol Immunol ; 68(9): 305-330, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38961765

RESUMEN

In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.


Asunto(s)
COVID-19 , Filogenia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/genética , Humanos , COVID-19/virología , Animales , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Antivirales/farmacología , Chlorocebus aethiops , Células Vero , Microscopía por Crioelectrón , Ratones
4.
Jpn J Infect Dis ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343560

RESUMEN

We estimated the seroprevalence of anti-SARS-COV-2 IgG in different island groups in Okinawa. A cross-sectional sero-survey was repeated in three periods between July 2020 and February 2021. A total of 2683 serum samples were collected from six referral medical centers, each covering a separate region in Okinawa. In the main island, the seroprevalence was 0.0% (0/392, 95% CI: 0.0-0.9), 0.6% (8/1448, 0.2-1.1), and 1.4% (8/582, 0.6-2.7) at the 1st, 2nd, and 3rd sero-survey, respectively. In the remote islands, the seroprevalence was 0.0% (0/144, 95% CI: 0.0-2.5) and 1.6% (2/123, 0.2-5.8) at the 2nd and 3rd survey, respectively. The case detection ratio was 2.7 (95% CI: 1.3-5.3) in the main island and 2.8 (0.7-11.1) in the remote islands during the 3rd survey. The case detection ratio was the highest in people aged 20-29 years (8.3, 95% CI: 3.3-21.4) in the main island and in those aged 50-59 years (14.1, 2.1-92.7) in the remote islands, suggesting under-reporting of clinical cases by the surveillance system in these subgroups. A sero-survey during an emerging infectious disease epidemic can be useful for validating the reliability of the surveillance system by providing the case detection ratio.

5.
EBioMedicine ; 104: 105181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838469

RESUMEN

BACKGROUND: Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS: We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS: In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION: Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING: This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).


Asunto(s)
COVID-19 , Quirópteros , SARS-CoV-2 , Animales , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Humanos , COVID-19/virología , Quirópteros/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Organoides/virología , Organoides/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/virología , Cricetinae , Furina/metabolismo , Células Epiteliales/virología , Células Vero , Chlorocebus aethiops
6.
Biomed Opt Express ; 14(5): 2333-2351, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206117

RESUMEN

An organoid is a three-dimensional (3D) in vitro cell culture emulating human organs. We applied 3D dynamic optical coherence tomography (DOCT) to visualize the intratissue and intracellular activities of human induced pluripotent stem cells (hiPSCs)-derived alveolar organoids in normal and fibrosis models. 3D DOCT data were acquired with an 840-nm spectral domain optical coherence tomography with axial and lateral resolutions of 3.8 µm (in tissue) and 4.9 µm, respectively. The DOCT images were obtained by the logarithmic-intensity-variance (LIV) algorithm, which is sensitive to the signal fluctuation magnitude. The LIV images revealed cystic structures surrounded by high-LIV borders and mesh-like structures with low LIV. The former may be alveoli with a highly dynamics epithelium, while the latter may be fibroblasts. The LIV images also demonstrated the abnormal repair of the alveolar epithelium.

7.
Commun Biol ; 6(1): 772, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488344

RESUMEN

The unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates ongoing control measures. Given its rapid spread, the new Omicron subvariant BA.5 requires urgent characterization. Here, we comprehensively analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1. Although in vitro growth kinetics of BA.5 was comparable among the Omicron subvariants, BA.5 was much more fusogenic than BA.1 and BA.2. Airway-on-a-chip analysis showed that, among Omicron subvariants, BA.5 had enhanced ability to disrupt the respiratory epithelial and endothelial barriers. Furthermore, in our hamster model, in vivo pathogenicity of BA.5 was slightly higher than that of the other Omicron variants and less than that of ancestral B.1.1. Notably, BA.5 gains efficient virus spread compared with BA.1 and BA.2, leading to prompt immune responses. Our findings suggest that BA.5 has low pathogenicity compared with the ancestral strain but enhanced virus spread /inflammation compared with earlier Omicron subvariants.


Asunto(s)
COVID-19 , Animales , Cricetinae , SARS-CoV-2 , Virulencia , Inflamación
8.
Nat Commun ; 14(1): 2800, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193706

RESUMEN

In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Masculino , Filogenia , SARS-CoV-2/genética , Recombinación Genética , Glicoproteína de la Espiga del Coronavirus/genética
9.
Nat Commun ; 14(1): 2671, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169744

RESUMEN

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Asunto(s)
COVID-19 , Animales , Cricetinae , Filogenia , SARS-CoV-2/genética , Sustitución de Aminoácidos , Bioensayo , Anticuerpos Neutralizantes , Anticuerpos Antivirales
10.
Clin Neurophysiol ; 139: 80-89, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569296

RESUMEN

OBJECTIVE: Easily detecting patients with undiagnosed sleep apnea syndrome (SAS) requires a home-use SAS screening system. In this study, we validate a previously developed SAS screening methodology using a large clinical polysomnography (PSG) dataset (N = 938). METHODS: We combined R-R interval (RRI) and long short-term memory (LSTM), a type of recurrent neural networks, and created a model to discriminate respiratory conditions using the training dataset (N = 468). Its performance was validated using the validation dataset (N = 470). RESULTS: Our method screened patients with severe SAS (apnea hypopnea index; AHI ≥ 30) with an area under the curve (AUC) of 0.92, a sensitivity of 0.80, and a specificity of 0.84. In addition, the model screened patients with moderate/severe SAS (AHI ≥ 15) with an AUC of 0.89, a sensitivity of 0.75, and a specificity of 0.87. CONCLUSIONS: Our method achieved high screening performance when applied to a large clinical dataset. SIGNIFICANCE: Our method can help realize an easy-to-use SAS screening system because RRI data can be easily measured with a wearable heart rate sensor. It has been validated on a large dataset including subjects with various backgrounds and is expected to perform well in real-world clinical practice.


Asunto(s)
Síndromes de la Apnea del Sueño , Área Bajo la Curva , Humanos , Tamizaje Masivo , Redes Neurales de la Computación , Polisomnografía , Síndromes de la Apnea del Sueño/diagnóstico
11.
Cell Host Microbe ; 30(11): 1540-1555.e15, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36272413

RESUMEN

The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda