Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Adv ; 4(10): eaau2426, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30345362

RESUMEN

High-precision monitoring of electrophysiological signals with high spatial and temporal resolutions is one of the most important subjects for elucidating physiology functions. Recently, ultraflexible multielectrode arrays (MEAs) have been fabricated to establish conformal contacts with the surface of organs and to measure propagation of electrophysiological signals with high spatial-temporal resolution; however, plastic substrates have high Young's modulus, causing difficulties in creating appropriate stretchability and blood compatibility for applying them on the dynamically moving and surgical bleeding surface of the heart. Here, we have successfully fabricated an active MEA that simultaneously achieves nonthrombogenicity, stretchability, and stability, which allows long-term electrocardiographic (ECG) monitoring of the dynamically moving hearts of rats even with capillary bleeding. Because of the active data readout, the measured ECG signals exhibit a high signal-to-noise ratio of 52 dB. The novel stretchable MEA is carefully designed using state-of-the-art engineering techniques by combining extraordinarily high gain organic electrochemical transistors processed on microgrid substrates and a coating of poly(3-methoxypropyl acrylate), which exhibits significant antithrombotic properties while maintaining excellent ionic conductivity.


Asunto(s)
Conductividad Eléctrica , Técnicas Electrofisiológicas Cardíacas/instrumentación , Corazón/fisiología , Animales , Módulo de Elasticidad , Fenómenos Electrofisiológicos , Diseño de Equipo , Masculino , Microelectrodos , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda