Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-38878020

RESUMEN

BACKGROUND: Biologic therapies inhibiting the IL-4 or IL-5 pathways are very effective in the treatment of asthma and other related conditions. However, the cytokines IL-4 and IL-5 also play a role in the generation of adaptive immune responses. Although these biologics do not cause overt immunosuppression, their effect in primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunization has not been studied completely. OBJECTIVE: Our aim was to evaluate the antibody and cellular immunity after SARS-CoV-2 mRNA vaccination in patients on biologics (PoBs). METHODS: Patients with severe asthma or atopic dermatitis who were taking benralizumab, dupilumab, or mepolizumab and had received the initial dose of the 2-dose adult SARS-CoV-2 mRNA vaccine were enrolled in a prospective, observational study. As our control group, we used a cohort of immunologically healthy subjects (with no significant immunosuppression) who were not taking biologics (NBs). We used a multiplexed immunoassay to measure antibody levels, neutralization assays to assess antibody function, and flow cytometry to quantitate Spike-specific lymphocytes. RESULTS: We analyzed blood from 57 patients in the PoB group and 46 control subjects from the NB group. The patients in the PoB group had lower levels of SARS-CoV-2 antibodies, pseudovirus neutralization, live virus neutralization, and frequencies of Spike-specific B and CD8 T cells at 6 months after vaccination. In subgroup analyses, patients with asthma who were taking biologics had significantly lower pseudovirus neutralization than did subjects with asthma who were not taking biologics. CONCLUSION: The patients in the PoB group had reduced SARS-CoV-2-specific antibody titers, neutralizing activity, and virus-specific B- and CD8 T-cell counts. These results have implications when considering development of a more individualized immunization strategy in patients who receive biologic medications blocking IL-4 or IL-5 pathways.

2.
Clin Cancer Res ; 27(3): 865-876, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168658

RESUMEN

PURPOSE: To explore the effects of pelareorep on autophagy in multiple models of colorectal cancer, including patient-derived peripheral blood mononuclear cells (PBMCs). EXPERIMENTAL DESIGN: HCT116 [KRAS mutant (mut)] and Hke3 [KRAS wild-type (WT)] cells were treated with pelareorep (multiplicity of infection, 5) and harvested at 6 and 9 hours. LC3 A/B expression was determined by immunofluorescence and flow cytometry; five autophagic proteins were analyzed by Western blotting. The expression of 88 autophagy genes was determined by qRT-PCR. Syngeneic mouse models, CT26/Balb-C (KRAS mut) and MC38/C57B6 (KRAS WT), were developed and treated with pelareorep (10 × 106 plaque-forming unit/day) intraperitoneally. Protein and RNA were extracted from harvested tumor tissues. PBMCs from five experimental and three control patients were sampled at 0 (pre) and 48 hours, and on days 8 and 15. The gene expression normalized to "pre" was determined using 2-ΔΔC t method. RESULTS: Pelareorep induced significant upregulation of LC3 A/B in HCT116 as compared with Hke3 cells by immunofluorescence (3.24 × and 8.67 ×), flow cytometry (2.37 × and 2.58 ×), and autophagosome formation (2.02 × and 1.57 ×), at 6 and 9 hours, respectively; all P < 0.05. Western blot analysis showed an increase in LC3 A/B (2.38 × and 6.82 ×) and Beclin1 (1.17 × and 1.24 ×) at 6 and 9 hours, ATG5 (2.4 ×) and P-62 (1.52 ×) at 6 hours, and VPS-34 (1.39 ×) at 9 hours (all P < 0.05). Induction of 13 transcripts in cell lines (>4 ×; 6 and 9 hours; P < 0.05), 12 transcripts in CT26 (qRT-PCR), and 14 transcripts in human PBMCs (P < 0.05) was observed. LC3 A/B, RICTOR, and RASD1 expression was upregulated in all three model systems. CONCLUSIONS: Pelareorep hijacks host autophagic machinery in KRAS-mut conditions to augment its propagation and preferential oncolysis of the cancer cells.


Asunto(s)
Autofagia/inmunología , Neoplasias Colorrectales/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Autofagia/genética , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Fluorouracilo/administración & dosificación , Regulación Neoplásica de la Expresión Génica/inmunología , Células HCT116 , Humanos , Infusiones Intravenosas , Inyecciones Intralesiones , Leucovorina/administración & dosificación , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Regulación hacia Arriba , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda