Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Development ; 147(19)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32907846

RESUMEN

Planar cell polarity (PCP) proteins localize asymmetrically to instruct cell polarity within the tissue plane, with defects leading to deformities of the limbs, neural tube and inner ear. Wnt proteins are evolutionarily conserved polarity cues, yet Wnt mutants display variable PCP defects; thus, how Wnts regulate PCP remains unresolved. Here, we have used the developing cochlea as a model system to show that secreted Wnts regulate PCP through polarizing a specific subset of PCP proteins. Conditional deletion of Wntless or porcupine, both of which are essential for secretion of Wnts, caused misrotated sensory cells and shortened cochlea - both hallmarks of PCP defects. Wntless-deficient cochleae lacked the polarized PCP components dishevelled 1/2 and frizzled 3/6, while other PCP proteins (Vangl1/2, Celsr1 and dishevelled 3) remained localized. We identified seven Wnt paralogues, including the major PCP regulator Wnt5a, which was, surprisingly, dispensable for planar polarization in the cochlea. Finally, Vangl2 haploinsufficiency markedly accentuated sensory cell polarization defects in Wntless-deficient cochlea. Together, our study indicates that secreted Wnts and Vangl2 coordinate to ensure proper tissue polarization during development.


Asunto(s)
Cóclea/embriología , Cóclea/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Wnt/metabolismo , Animales , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Genotipo , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Electrónica de Rastreo , Proteínas del Tejido Nervioso/genética , Reacción en Cadena de la Polimerasa , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética
2.
J Neurosci ; 32(12): 4196-211, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22442082

RESUMEN

In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.


Asunto(s)
Cadherinas/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Axones/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neuronas GABAérgicas/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Microscopía Inmunoelectrónica , Mutación/genética , Interferencia de ARN/fisiología , Sinapsis/genética , Vesículas Sinápticas/genética
3.
Development ; 137(21): 3663-73, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876647

RESUMEN

Development of a functional neuronal network during embryogenesis begins with pioneer axons creating a scaffold along which later-outgrowing axons extend. The molecular mechanism used by these follower axons to navigate along pre-existing axons remains poorly understood. We isolated loss-of-function alleles of fmi-1, which caused strong axon navigation defects of pioneer and follower axons in the ventral nerve cord (VNC) of C. elegans. Notably follower axons, which exclusively depend on pioneer axons for correct navigation, frequently separated from the pioneer. fmi-1 is the sole C. elegans ortholog of Drosophila flamingo and vertebrate Celsr genes, and this phenotype defines a new role for this important molecule in follower axon navigation. FMI-1 has a unique and strikingly conserved structure with cadherin and C-terminal G-protein coupled receptor domains and could mediate cell-cell adhesion and signaling functions. We found that follower axon navigation depended on the extracellular but not on the intracellular domain, suggesting that FMI-1 mediates primarily adhesion between pioneer and follower axons. By contrast, pioneer axon navigation required the intracellular domain, suggesting that FMI-1 acts as receptor transducing a signal in this case. Our findings indicate that FMI-1 is a cell-type dependent axon guidance factor with different domain requirements for its different functions in pioneers and followers.


Asunto(s)
Axones/fisiología , Cadherinas/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Movimiento Celular/fisiología , Vías Nerviosas/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cadherinas/química , Cadherinas/genética , Cadherinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimiento Celular/genética , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Vías Nerviosas/metabolismo , Técnicas de Trazados de Vías Neuroanatómicas , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología
4.
J Clin Invest ; 128(4): 1641-1656, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29553487

RESUMEN

During development, Sox2 is indispensable for cell division and differentiation, yet its roles in regenerating tissues are less clear. Here, we used combinations of transgenic mouse models to reveal that Sox2 haploinsufficiency (Sox2haplo) increases rather than impairs cochlear regeneration in vivo. Sox2haplo cochleae had delayed terminal mitosis and ectopic sensory cells, yet normal auditory function. Sox2haplo amplified and expanded domains of damage-induced Atoh1+ transitional cell formation in neonatal cochlea. Wnt activation via ß-catenin stabilization (ß-cateninGOF) alone failed to induce proliferation or transitional cell formation. By contrast, ß-cateninGOF caused proliferation when either Sox2haplo or damage was present, and transitional cell formation when both were present in neonatal, but not mature, cochlea. Mechanistically, Sox2haplo or damaged neonatal cochleae showed lower levels of Sox2 and Hes5, but not of Wnt target genes. Together, our study unveils an interplay between Sox2 and damage in directing tissue regeneration and Wnt responsiveness and thus provides a foundation for potential combinatorial therapies aimed at stimulating mammalian cochlear regeneration to reverse hearing loss in humans.


Asunto(s)
Cóclea/fisiología , Haploinsuficiencia , Regeneración , Factores de Transcripción SOXB1/metabolismo , Vía de Señalización Wnt , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Pérdida Auditiva/terapia , Humanos , Ratones , Ratones Transgénicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/genética , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda