Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Pharmacol Sci ; 151(1): 37-45, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522121

RESUMEN

Purine derivatives such as caffeine and uric acid have neuroprotective activities and are negatively correlated with the incidence of both Alzheimer's disease and Parkinson's disease. We have reported that an increment of intracellular glutathione (GSH) via cysteine uptake in neuronal cells is one of the mechanisms by which caffeine and uric acid confer neuroprotection. Here, we investigated whether caffeine metabolites such as paraxanthine, theophylline, theobromine, 1,7-dimethyluric acid and monomethylxanthines would increase cysteine uptake in mouse hippocampal slices. The metabolites were administered to hippocampal slices for 30 min at doses of 0, 10, or 100 µM, and then cysteine was added for 30 min. Paraxanthine, a major metabolite of caffeine, increased cysteine content in the slices, whereas the other metabolites did not. In vitro treatment with paraxanthine promoted cysteine uptake and increased GSH in HEK293 cells. The paraxanthine-induced cysteine uptake was inhibited by an excitatory amino-acid carrier-1 (EAAC1) inhibitor, and H2O2-induced cell damage was prevented by the paraxanthine treatment of SH-SY5Y cells. These results suggest that paraxanthine, an active metabolite of caffeine, acts to increase intracellular GSH levels via EAAC1 leading to neuroprotection.


Asunto(s)
Neuroblastoma , Teofilina , Humanos , Animales , Ratones , Teofilina/farmacología , Cafeína/farmacología , Cisteína , Ácido Úrico , Peróxido de Hidrógeno , Células HEK293 , Glutatión
2.
FASEB J ; 32(1): 330-341, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904020

RESUMEN

Pro-opiomelanocortin (POMC)-expressing neurons provide α-melanocyte-stimulating hormone (α-MSH), which stimulates melanocortin 4 receptor to induce hypophagia by AMPK inhibition in the hypothalamus. α-MSH is produced by POMC cleavage in secretory granules and released. However, it is not known yet whether any posttranscriptional regulatory mechanism of POMC signaling exists upstream of the secretory granules in neurons. Here we show that glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein that retains interacting proteins in the endoplasmic reticulum, is a critical regulator of food intake and body weight by interacting with POMC. GTRAP3-18-deficient mice showed hypophagia, lean bodies, and lower blood glucose, insulin, and leptin levels with increased serum and brain α-MSH levels, leading to AMPK inhibition. Intraperitoneal glucose tolerance tests revealed significantly decreased blood glucose levels and areas under the curve in GTRAP3-18-deficient mice compared to wild-type mice. An intracerebroventricular infusion of a selective melanocortin 4 receptor antagonist to GTRAP3-18-deficient mice significantly increased their food intake and body weight. A fluorescence resonance energy transfer study showed an interaction between GTRAP3-18 and POMC in vitro These findings suggest that activation of the melanocortin pathway by modulating GTRAP3-18/POMC interaction could be an alternative strategy for obesity and/or type 2 diabetes.-Aoyama, K., Bhadhprasit, W., Watabe, M., Wang, F., Matsumura, N., Nakaki, T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin.


Asunto(s)
Peso Corporal/fisiología , Proteínas Portadoras/fisiología , Ingestión de Alimentos/fisiología , Proopiomelanocortina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/metabolismo , Animales , Apetito , Glucemia/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas de Choque Térmico , Hipotálamo/metabolismo , Insulina/sangre , Leptina/sangre , Masculino , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Pérdida de Peso , alfa-MSH/metabolismo
3.
Anal Biochem ; 546: 1-4, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407580

RESUMEN

MALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection. We herein provide a simple approach to enable the MS detection of such precipitated protein species by means of a "direct deposition method" -- loading the precipitant directly onto the sample plate. It is thus expected to improve routine MS analysis of intact proteins.


Asunto(s)
Cinamatos/química , Proopiomelanocortina/análisis , Disciplinas de las Ciencias Biológicas , Humanos , Proteínas Recombinantes/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Protein Expr Purif ; 148: 40-45, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29601966

RESUMEN

Recombinant techniques for target protein production have been rapidly established and widely utilised in today's biological research. Nevertheless, methods for membrane protein production have yet to be developed, since membrane proteins generally tend to be expressed at low levels, easily aggregated, and/or even toxic to their host cells. Here we report that a GFP-tagging technique can be applied for the stable production of membrane proteins that are toxic to their host cells when overexpressed, paving the way for future advances in membrane protein biochemistry and drug development.


Asunto(s)
Proteínas Fúngicas/aislamiento & purificación , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas de la Membrana/genética , Potyvirus/genética , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae
5.
Protein Expr Purif ; 105: 1-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25286400

RESUMEN

Stem cell factor (SCF) known as the c-kit ligand is a two disulfide bridge-containing cytokine in the regulation of the development and function of hematopoietic cell lineages and other cells such as mast cells, germ cells, and melanocytes. The secreted soluble form of SCF exists as noncovalently associated homodimer and exerts its activity by signaling through the c-Kit receptor. In this report, we present the high level expression of a soluble recombinant human SCF (rhSCF) in Escherichia coli. A codon-optimized Profinity eXact™-tagged hSCF cDNA was cloned into pET3b vector, and transformed into E. coli BL21(DE3) harboring a bacterial thioredoxin coexpression vector. The recombinant protein was purified via an affinity chromatography processed by cleavage with sodium fluoride, resulting in the complete proteolytic removal the N-terminal tag. Although almost none of the soluble fusion protein bound to the resin in standard protocol using 0.1M sodium phosphate buffer (pH 7.2), the use of binding buffer containing 0.5M l-arginine for protein stabilization dramatically enhanced binding to resin and recovery of the protein beyond expectation. Also pretreatment by Triton X-114 for removing endotoxin was effective for affinity chromatography. In chromatography performance, l-arginine was more effective than Triton X-114 treatment. Following Mono Q anion exchange chromatography, the target protein was isolated in high purity. The rhSCF protein specifically enhanced the viability of human myeloid leukemia cell line TF-1 and the proliferation and maturation of human mast cell line LAD2 cell. This novel protocol for the production of rhSCF is a simple, suitable, and efficient method.


Asunto(s)
Arginina/química , Cromatografía de Afinidad/métodos , Escherichia coli/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Células Madre/metabolismo , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Arginina/metabolismo , Secuencia de Bases , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/toxicidad , Factor de Células Madre/química , Factor de Células Madre/aislamiento & purificación , Factor de Células Madre/toxicidad , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/aislamiento & purificación
6.
Molecules ; 20(5): 8742-58, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-26007177

RESUMEN

Reactive oxygen species (ROS) are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system's roles in maintaining redox homeostasis. Especially, glutathione (GSH) is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1) plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/biosíntesis , Enfermedades Neurodegenerativas/patología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/química , Encéfalo/metabolismo , Glutatión/química , Humanos , Mitocondrias/metabolismo , Fármacos Neuroprotectores , Oxidación-Reducción , Estrés Oxidativo
7.
J Cell Sci ; 124(Pt 9): 1519-32, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21486957

RESUMEN

Misfolded protein aggregates elicit a stress response, and their clearance is crucial for cell survival. These aggregates are transported by cytoplasmic deacetylase HDAC6 and dynein motors to the aggresome via the microtubule network, and are removed by autophagic degradation. HDAC6 activity is necessary for both the transport and clearance of protein aggregates. However, the cellular factors that regulate HDAC6 activity remain unknown. Here we show that protein kinase CK2 is a crucial modulator of HDAC6 activity because CK2 directly phosphorylates HDAC6 and increases cytoplasmic deacetylase activity. Indeed, cells that expressed HDAC6 mutated at Ser458, a CK2-mediated phosphorylation site, failed to both form and clear aggresomes, and increased cytotoxicity. Interestingly, Ser458 is conserved only in higher primates, such as human and chimpanzee, but not in the rhesus macaque. These findings identify CK2 as a crucial protein involved in the formation and clearance of aggresomes, and hence in cell viability in response to misfolded protein stress.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Histona Desacetilasas/metabolismo , Animales , Quinasa de la Caseína II/genética , Línea Celular , Fragmentación del ADN , Electroforesis en Gel de Poliacrilamida , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Pan troglodytes , Ácidos Fosfoaminos/metabolismo , Fosforilación/genética , Fosforilación/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología
8.
Amino Acids ; 45(1): 133-42, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23462929

RESUMEN

Extracellular glutamate should be maintained at low levels to conserve optimal neurotransmission and prevent glutamate neurotoxicity in the brain. Excitatory amino acid transporters (EAATs) play a pivotal role in removing extracellular glutamate in the central nervous system (CNS). Excitatory amino acid carrier 1 (EAAC1) is a high-affinity Na⁺-dependent neuronal EAAT that is ubiquitously expressed in the brain. However, most glutamate released in the synapses is cleared by glial EAATs, but not by EAAC1 in vivo. In the CNS, EAAC1 is widely distributed in somata and dendrites but not in synaptic terminals. The contribution of EAAC1 to the control of extracellular glutamate levels seems to be negligible in the brain. However, EAAC1 can transport not only extracellular glutamate but also cysteine into the neurons. Cysteine is an important substrate for glutathione (GSH) synthesis in the brain. GSH has a variety of neuroprotective functions, while its depletion induces neurodegeneration. Therefore, EAAC1 might exert a critical role for neuroprotection in neuronal GSH metabolism rather than glutamatergic neurotransmission, while EAAC1 dysfunction would cause neurodegeneration. Despite the potential importance of EAAC1 in the brain, previous studies have mainly focused on the glutamate neurotoxicity induced by glial EAAT dysfunction. In recent years, however, several studies have revealed regulatory mechanisms of EAAC1 functions in the brain. This review will summarize the latest information on the EAAC1-regulated neuroprotective functions in the CNS.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Fármacos Neuroprotectores/metabolismo , Transmisión Sináptica , Animales , Antioxidantes/metabolismo , Sistema Nervioso Central/metabolismo , Cisteína/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Ratones
9.
Int J Mol Sci ; 14(10): 21021-44, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24145751

RESUMEN

Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.


Asunto(s)
Glutatión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Antioxidantes/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo/fisiología
10.
Neurobiol Dis ; 45(3): 973-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210510

RESUMEN

Glutathione (GSH) is an important neuroprotective molecule in the brain. The strategy to increase neuronal GSH level is a promising approach to the treatment of neurodegenerative diseases. However, the regulatory mechanism by which neuron-specific GSH synthesis is facilitated remains elusive. Glutamate transporter-associated protein 3-18 (GTRAP3-18) is an endoplasmic reticulum protein interacting with excitatory amino acid carrier 1 (EAAC1), which is a neuronal glutamate/cysteine transporter. To investigate the potential regulatory mechanism to increase neuronal GSH level in vivo, we generated GTRAP3-18-deficient (GTRAP3-18(-/-)) mice using a gene-targeting approach. Disruption of the GTRAP3-18 gene resulted in increased EAAC1 expression in the plasma membrane, increased neuronal GSH content and neuroprotection against oxidative stress. In addition, GTRAP3-18(-/-) mice performed better in motor/spatial learning and memory tests than wild-type mice. Therefore, the suppression of GTRAP3-18 increases neuronal resistance to oxidative stress by increasing GSH content and also facilitates cognitive function. The present results may provide a molecular basis for the development of treatments for neurodegenerative diseases.


Asunto(s)
Encéfalo/citología , Proteínas Portadoras/genética , Glutatión/metabolismo , Neuronas/metabolismo , Análisis de Varianza , Animales , Proteínas de Unión al Calcio/metabolismo , Cisteína/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Proteínas de Choque Térmico , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Molsidomina/análogos & derivados , Molsidomina/farmacología , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Fenotipo , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
11.
Amino Acids ; 42(1): 163-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21373771

RESUMEN

Glutathione (GSH) plays essential roles in different processes such as antioxidant defenses, cell signaling, cell proliferation, and apoptosis in the central nervous system. GSH is a tripeptide composed of glutamate, cysteine, and glycine. The concentration of cysteine in neurons is much lower than that of glutamate or glycine, so that cysteine is the rate-limiting substrate for neuronal GSH synthesis. Most neuronal cysteine uptake is mediated through the neuronal sodium-dependent glutamate transporter, known as excitatory amino acid carrier 1 (EAAC1). Glutamate transporters are vulnerable to oxidative stress and EAAC1 dysfunction impairs neuronal GSH synthesis by reducing cysteine uptake. This may start a vicious circle leading to neurodegeneration. Intracellular signaling molecules functionally regulate EAAC1. Glutamate transporter-associated protein 3-18 (GTRAP3-18) activation down-regulates EAAC1 function. Here, we focused on the interaction between EAAC1 and GTRAP3-18 at the plasma membrane to investigate their effects on neuronal GSH synthesis. Increased level of GTRAP3-18 protein induced a decrease in GSH level and, thereby, increased the vulnerability to oxidative stress, while decreased level of GTRAP3-18 protein induced an increase in GSH level in vitro. We also confirmed these results in vivo. Our studies demonstrate that GTRAP3-18 regulates neuronal GSH level by controlling the EAAC1-mediated uptake of cysteine.


Asunto(s)
Proteínas Portadoras/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/biosíntesis , Neuronas/metabolismo , Animales , Glutatión/metabolismo , Humanos
12.
Int J Mol Sci ; 13(9): 12017-12035, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23109897

RESUMEN

Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine; it has a variety of functions in the central nervous system. Brain GSH depletion is considered a preclinical sign in age-related neurodegenerative diseases, and it promotes the subsequent processes toward neurotoxicity. A neuroprotective mechanism accomplished by increasing GSH synthesis could be a promising approach in the treatment of neurodegenerative diseases. In neurons, cysteine is the rate-limiting substrate for GSH synthesis. Excitatory amino acid carrier 1 (EAAC1) is a neuronal cysteine/glutamate transporter in the brain. EAAC1 translocation to the plasma membrane promotes cysteine uptake, leading to GSH synthesis, while being negatively regulated by glutamate transport associated protein 3-18 (GTRAP3-18). Our recent studies have suggested GTRAP3-18 as an inhibitory factor for neuronal GSH synthesis. Inhibiting GTRAP3-18 function is an endogenous mechanism to increase neuron-specific GSH synthesis in the brain. This review gives an overview of EAAC1-mediated GSH synthesis, and its regulatory mechanisms by GTRAP3-18 in the brain, and a potential approach against neurodegeneration.


Asunto(s)
Encéfalo/metabolismo , Glutatión/biosíntesis , Proteínas de Choque Térmico/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/patología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte de Membrana , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología
13.
Commun Biol ; 4(1): 182, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568779

RESUMEN

Glutathione (GSH) is an important antioxidant that plays a critical role in neuroprotection. GSH depletion in neurons induces oxidative stress and thereby promotes neuronal damage, which in turn is regarded as a hallmark of the early stage of neurodegenerative diseases. The neuronal GSH level is mainly regulated by cysteine transporter EAAC1 and its inhibitor, GTRAP3-18. In this study, we found that the GTRAP3-18 level was increased by up-regulation of the microRNA miR-96-5p, which was found to decrease EAAC1 levels in our previous study. Since the 3'-UTR region of GTRAP3-18 lacks the consensus sequence for miR-96-5p, an unidentified protein should be responsible for the intermediate regulation of GTRAP3-18 expression by miR-96-5p. Here, we discovered that RNA-binding protein NOVA1 functions as an intermediate protein for GTRAP3-18 expression via miR-96-5p. Moreover, we show that intra-arterial injection of a miR-96-5p-inhibiting nucleic acid to living mice by a drug delivery system using microbubbles and ultrasound decreased the level of GTRAP3-18 via NOVA1 and increased the levels of EAAC1 and GSH in the dentate gyrus of the hippocampus. These findings suggest that the delivery of a miR-96-5p inhibitor to the brain would efficiently increase the neuroprotective activity by increasing GSH levels via EAAC1, GTRAP3-18 and NOVA1.


Asunto(s)
Giro Dentado/efectos de los fármacos , Glutatión/metabolismo , MicroARNs/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Giro Dentado/metabolismo , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Inyecciones Intraarteriales , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Microburbujas , Antígeno Ventral Neuro-Oncológico , Fármacos Neuroprotectores/administración & dosificación , Proteínas de Unión al ARN/genética , Ultrasonido , Regulación hacia Arriba
14.
J Cell Biol ; 169(6): 921-8, 2005 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-15967813

RESUMEN

Musculin/MyoR is a new member of basic helix-loop-helix transcription factors, and its expression is limited to skeletal muscle precursors. Here, we report that musculin/MyoR is expressed in adult kidney side population (SP) cells and can regulate their function. SP phenotype can be used to purify stem cell-rich fractions. Microarray analysis clarified that musculin/MyoR was exclusively expressed in kidney SP cells, and the cells resided in the renal interstitial space. Musculin/MyoR-positive cells were decreased in acute renal failure, but infusion of kidney SP cells increased musculin/MyoR-positive cells and improved renal function. Kidney SP cells in reversible acute renal failure expressed a high level of renoprotective factors and leukemia inhibitory factor (LIF), but not in irreversible chronic renal failure. In cultured kidney SP cells, LIF stimulated gene expression of renoprotective factors, and down-regulation of musculin/MyoR augmented LIF-induced gene expression. Our results suggest that musculin/MyoR may play important roles not only in developmental processes but also in regenerative processes in adult tissue.


Asunto(s)
Células Epiteliales/metabolismo , Riñón/metabolismo , Regeneración/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citoprotección/efectos de los fármacos , Citoprotección/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Células Epiteliales/citología , Células Epiteliales/trasplante , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Interleucina-6/metabolismo , Interleucina-6/farmacología , Riñón/citología , Factor Inhibidor de Leucemia , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Proteínas Musculares , Regeneración/efectos de los fármacos , Insuficiencia Renal/metabolismo , Insuficiencia Renal/fisiopatología , Insuficiencia Renal/terapia
15.
J Infect Chemother ; 16(2): 100-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20094750

RESUMEN

Lansoprazole (LPZ) is a proton pump inhibitor that suppresses gastric secretion and exerts anti-inflammatory effects on immune cells. Recently, LPZ has been used for the treatment of peptic ulcer and gastritis, which can be caused by Helicobacter pylori, due to its potent acid-suppressive effects. We focused the aim to the anti-inflammatory effects on the over-activation of neutrophils, and investigated the effects of LPZ on the signal transduction of the mitogen-activated protein kinase (MAPK) family. LPZ slightly phosphorylated p38 MAPK of neutrophils at a concentration of 10 microg/ml , but did not phosphorylate extracellular-signal regulated kinase (ERK) 1/2. Pretreatment of neutrophils with (1-5 microg/ml ) LPZ strongly attenuated the phorbol-12-myristate-13-acetate-stimulated phosphorylation of ERK1/2, and LPZ slightly suppressed the lipopolysaccharide (LPS)- and N-formylmethionylleucylphenylalanine-stimulated phosphorylation of p38. ERK1/2 produces the mitochondrial anti-apoptotic proteins, and the signaling pathway from LPS and N-formylmethionylleucylphenylalanine to p38 is the main pathway for reactive oxygen species production. The mechanism of anti-inflammatory effect of LPZ on hyper-activated neutrophils is suggested to be the suppression of signal transduction of ERK1/2 and p38 MAPK.


Asunto(s)
2-Piridinilmetilsulfinilbencimidazoles/farmacología , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neutrófilos/enzimología , Inhibidores de la Bomba de Protones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Humanos , Lansoprazol , Neutrófilos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
16.
Clocks Sleep ; 2(3): 282-307, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33089205

RESUMEN

Circadian rhythms are endogenous 24-h oscillators that regulate the sleep/wake cycles and the timing of biological systems to optimize physiology and behavior for the environmental day/night cycles. The systems are basically generated by transcription-translation feedback loops combined with post-transcriptional and post-translational modification. Recently, evidence is emerging that additional non-coding RNA-based mechanisms are also required to maintain proper clock function. MicroRNA is an especially important factor that plays critical roles in regulating circadian rhythm as well as many other physiological functions. Circadian misalignment not only disturbs the sleep/wake cycle and rhythmic physiological activity but also contributes to the development of various diseases, such as sleep disorders and neurodegenerative diseases. The patient with neurodegenerative diseases often experiences profound disruptions in their circadian rhythms and/or sleep/wake cycles. In addition, a growing body of recent evidence implicates sleep disorders as an early symptom of neurodegenerative diseases, and also suggests that abnormalities in the circadian system lead to the onset and expression of neurodegenerative diseases. The genetic mutations which cause the pathogenesis of familial neurodegenerative diseases have been well studied; however, with the exception of Huntington's disease, the majority of neurodegenerative diseases are sporadic. Interestingly, the dysfunction of microRNA is increasingly recognized as a cause of sporadic neurodegenerative diseases through the deregulated genes related to the pathogenesis of neurodegenerative disease, some of which are the causative genes of familial neurodegenerative diseases. Here we review the interplay of circadian rhythm disruption, sleep disorders and neurodegenerative disease, and its relation to microRNA, a key regulator of cellular processes.

17.
J Neurosci ; 28(38): 9404-13, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18799673

RESUMEN

Glutathione is an essential reductant which protects cells and is reduced in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Neurons rely mainly on extracellular cysteine for glutathione synthesis and a cysteine transporter termed excitatory amino acid carrier 1 (EAAC1). However, the mechanisms underlying neuronal cysteine uptake have remained elusive. Herein, we show glutamate transport-associated protein for EAAC1 (GTRAP3-18) to interact with EAAC1 at the plasma membrane and thereby regulate neuronal glutathione levels. Glutathione increased in the mouse brain as well as in primary cultured neurons, when the GTRAP3-18 protein level was decreased by genetic manipulations, whereas glutathione decreased when GTRAP3-18 was increased. Furthermore, glutathione contents that had been increased, by a translocator and activator of EAAC1, were suppressed by increased cell surface GTRAP3-18 protein. Our results demonstrate GTRAP3-18 to dominantly and negatively determine the intracellular glutathione contents in neurons.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/fisiología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glutatión/biosíntesis , Neuronas/metabolismo , Estrés Oxidativo/genética , Animales , Animales Recién Nacidos , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Células Cultivadas , Cisteína/metabolismo , Regulación hacia Abajo/genética , Proteínas de Choque Térmico , Inmunohistoquímica , Masculino , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos Antisentido/farmacología , Interferencia de ARN , Ratas
18.
J Infect Chemother ; 15(6): 374-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20012727

RESUMEN

Lansoprazole (LPZ) has anti-inflammatory activity and repairs cells damaged by phagocytic cells. In the present study, we evaluated the effects of LPZ on gene expression, especially that of immunomodulator genes, in human polymorphonuclear leukocytes (PMNs) activated by lipopolysaccharide (LPS). Several concentrations of LPZ (final concentrations, 0-10 microg/ml) were added to the PMNs (1 x 10(6) cells/ml), which were stimulated with LPS (100 ng/ml) and incubated at 37 degrees C for 1 or 3 h. When LPS-stimulated PMNs were treated with LPZ at >or=5.0 microg/ml for 1 h, mRNA expression levels of CXCR1/2 and TNFalpha were suppressed in a dose-dependent manner. The gene expression level of CD14 was also downregulated by LPZ at >or=0.1 microg/ml, with expression suppressed to 50% by 10 microg/ml LPZ. However, LPZ at 0.01-5.0 microg/ml had no significant effect on the expression of TLR-4 or CD11b/CD18 mRNA. LPZ at 10 microg/ml downregulated the levels of these mRNAs to 80% and 50%, respectively. On the other hand, when the reaction period was extended to 3 h with the same conditions, all mRNA expression levels were downregulated by >or=0.01 microg/ml LPZ, in a dose-dependent manner. LPZ may suppress the biological functions of PMNs, such as chemotaxis and inflammatory chemokine production.


Asunto(s)
2-Piridinilmetilsulfinilbencimidazoles/farmacología , Inhibidores Enzimáticos/farmacología , Lipopolisacáridos/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Antígeno CD11b/biosíntesis , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Antígenos CD18/biosíntesis , Antígenos CD18/genética , Antígenos CD18/inmunología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Lansoprazol , Receptores de Lipopolisacáridos/biosíntesis , Receptores de Lipopolisacáridos/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores de Interleucina-8A/biosíntesis , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/biosíntesis , Receptores de Interleucina-8B/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
19.
Mol Pharmacol ; 74(4): 933-40, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18599602

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder characterized by selective degeneration of nigrostriatal dopaminergic neurons. Long-term systemic mitochondrial complex I inhibition by rotenone induces selective degeneration of dopaminergic neurons in rats. We have reported dopamine redistribution from vesicles to the cytosol to play a crucial role in selective dopaminergic cell apoptosis. In the present study, we investigated how rotenone causes dopamine redistribution to the cytosol using an in vitro model of human dopaminergic SH-SY5Y cells. Rotenone stimulated nitration of the tyrosine residues of intracellular proteins. The inhibition of nitric-oxide synthase or reactive oxygen species decreased the amount of nitrotyrosine and attenuated rotenone-induced apoptosis. When we examined the intracellular localization of dopamine immunocytochemically using anti-dopamine/vesicular monoamine transporter 2 (VMAT2) antibodies and quantitatively using high-performance liquid chromatography, inhibiting nitration was found to suppress rotenone-induced dopamine redistribution from vesicles to the cytosol. We demonstrated rotenone to nitrate tyrosine residues of VMAT2 using an immunocytochemical method with anti-nitrotyrosine antibodies and biochemically with immunoprecipitation experiments. Rotenone inhibited the VMAT2 activity responsible for the uptake of dopamine into vesicles, and this inhibition was reversed by inhibiting nitration. Moreover, rotenone induced the accumulation of aggregate-like formations in the stained image of VMAT2, which was reversed by inhibiting nitration. Our findings demonstrate that nitration of the tyrosine residues of VMAT2 by rotenone leads to both functional inhibition and accumulation of aggregate-like formations of VMAT2 and consequently to the redistribution of dopamine to the cytosol and apoptosis of dopaminergic SH-SY5Y cells.


Asunto(s)
Dopamina/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Rotenona/farmacología , Desacopladores/farmacología , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citosol/metabolismo , Fragmentación del ADN/efectos de los fármacos , Dopamina/análisis , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente Directa , Humanos , Mitocondrias/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Neuroblastoma/metabolismo , Nitrógeno/metabolismo , Piperazinas/farmacología , Factores de Tiempo , Tirosina/análogos & derivados , Tirosina/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/análisis
20.
Eur J Neurosci ; 27(1): 20-30, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18093171

RESUMEN

Excitatory amino acid carrier 1 (EAAC1) is a glutamate transporter expressed on mature neurons in the CNS, and is the primary route for uptake of the neuronal cysteine needed to produce glutathione (GSH). Parkinson's disease (PD) is a neurodegenerative disorder pathogenically related to oxidative stress and shows GSH depletion in the substantia nigra (SN). Herein, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, an experimental model of PD, showed reduced motor activity, reduced GSH contents, EAAC1 translocation to the membrane and increased levels of nitrated EAAC1. These changes were reversed by pre-administration of n-acetylcysteine (NAC), a membrane-permeable cysteine precursor. Pretreatment with 7-nitroindazole, a specific neuronal nitric oxide synthase inhibitor, also prevented both GSH depletion and nitrotyrosine formation induced by MPTP. Pretreatment with hydrogen peroxide, L-aspartic acid beta-hydroxamate or 1-methyl-4-phenylpyridinium reduced the subsequent cysteine increase in midbrain slice cultures. Studies with chloromethylfluorescein diacetate, a GSH marker, demonstrated dopaminergic neurons in the SN to have increased GSH levels after NAC treatment. These findings suggest that oxidative stress induced by MPTP may reduce neuronal cysteine uptake, via EAAC1 dysfunction, leading to impaired GSH synthesis, and that NAC would exert a protective effect against MPTP neurotoxicity by maintaining GSH levels in dopaminergic neurons.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/metabolismo , Glutatión/deficiencia , Intoxicación por MPTP/complicaciones , Intoxicación por MPTP/metabolismo , Trastornos del Movimiento/etiología , Estrés Oxidativo/fisiología , 1-Metil-4-fenilpiridinio/farmacología , Acetilcisteína/administración & dosificación , Animales , Ácido Aspártico/farmacología , Conducta Animal/efectos de los fármacos , Cisteína/metabolismo , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Depuradores de Radicales Libres/administración & dosificación , Humanos , Peróxido de Hidrógeno/farmacología , Ácidos Hidroxámicos/farmacología , Técnicas In Vitro , Indazoles/administración & dosificación , Intoxicación por MPTP/patología , Intoxicación por MPTP/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda