Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 23(16): 7675-7682, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578323

RESUMEN

The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.

2.
Phys Rev Lett ; 125(17): 176401, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33156655

RESUMEN

The electrons in 2D systems with broken inversion symmetry are spin-polarized due to spin-orbit coupling and provide perfect targets for observing exotic spin-related fundamental phenomena. We observe a Fermi surface with a novel spin texture in the 2D metallic system formed by indium double layers on Si(111) and find that the primary origin of the spin-polarized electronic states of this system is the orbital angular momentum and not the so-called Rashba effect. The present results deepen the understanding of the physics arising from spin-orbit coupling in atomic-layered materials with consequences for spintronic devices and the physics of the superconducting state.

3.
Chem Pharm Bull (Tokyo) ; 66(3): 263-269, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29491260

RESUMEN

Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.


Asunto(s)
Aripiprazol/química , Fuerza Compresiva/fisiología , Cristalización , Humedad , Comprimidos/química , Temperatura , Factores de Tiempo , Agua/química , Difracción de Rayos X
4.
Nat Commun ; 12(1): 1462, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674608

RESUMEN

Spin-momentum locking is essential to the spin-split Fermi surfaces of inversion-symmetry broken materials, which are caused by either Rashba-type or Zeeman-type spin-orbit coupling (SOC). While the effect of Zeeman-type SOC on superconductivity has experimentally been shown recently, that of Rashba-type SOC remains elusive. Here we report on convincing evidence for the critical role of the spin-momentum locking on crystalline atomic-layer superconductors on surfaces, for which the presence of the Rashba-type SOC is demonstrated. In-situ electron transport measurements reveal that in-plane upper critical magnetic field is anomalously enhanced, reaching approximately three times the Pauli limit at T = 0. Our quantitative analysis clarifies that dynamic spin-momentum locking, a mechanism where spin is forced to flip at every elastic electron scattering, suppresses the Cooper pair-breaking parameter by orders of magnitude and thereby protects superconductivity. The present result provides a new insight into how superconductivity can survive the detrimental effects of strong magnetic fields and exchange interactions.

5.
Clin Epigenetics ; 11(1): 111, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370878

RESUMEN

BACKGROUND: DNA demethylation therapy is now used in practice for hematological tumors and is being developed for solid tumors. Nevertheless, it is difficult to achieve stable pharmacokinetics with the current DNA-demethylating agents, azacitidine (AZA) and decitabine (DAC), because of their rapid deamination by cytidine deaminase in vivo and spontaneous hydrolytic cleavage. Here, we aimed to develop metabolically stable prodrugs of AZA and DAC as novel DNA-demethylating agents. RESULTS: Thirty-five 5'-O-trialkylsilylated AZAs/DACs were synthesized with potential resistance to deamination. Out of these, 11 compounds exhibited demethylating activity similar to that of DAC and guadecitabine, and a suitable aqueous solubility. Pharmacokinetic analysis in mice showed that OR-2003 displayed the highest serum concentration and the area under the curve in an intraperitoneal experiment, whereas OR-2100 exhibited high stability to cytidine deaminase. Treatment of cells with OR-2003 and OR-2100 depleted DNA methyltransferase 1 completely and induced both gene-specific and genome-wide demethylation. The treatment suppressed the growth of multiple types of cancer cells and induced re-expression of tumor suppressor genes. The anti-tumor effect and DNA demethylation effect of OR-2003 and OR-2100 were comparable to that of DAC with fewer adverse effects in vivo. CONCLUSIONS: We developed two novel prodrugs of DAC that exhibited greater stability, comparable DNA demethylation activity, and less toxicity. These compounds are expected to overcome the difficulty in achieving stable pharmacokinetics in patients, leading to maximum DNA demethylation activity with minimum adverse effects.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Decitabina/química , Neoplasias/tratamiento farmacológico , Profármacos/síntesis química , Profármacos/farmacocinética , Animales , Área Bajo la Curva , Azacitidina/química , Análisis Químico de la Sangre , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inyecciones Intraperitoneales , Ratones , Neoplasias/genética , Profármacos/administración & dosificación , Profármacos/química , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda