Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Chemistry ; : e202401785, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946611

RESUMEN

Developing a water-soluble, oxygen-tolerant, and acid-stable synthetic H2 production catalyst is vital for renewable energy infrastructure. To access such an effective catalyst, we strategically incorporated enzyme-inspired, multicomponent outer coordination sphere elements around the cobaloxime (Cl-Co-X) core with suitable axial coordination (X). Our cobaloximes with axial imidazole or L-histidine coordination in photocatalytic HAT including the construction of anilines via a non-canonical cross-coupling approach is found superior compared to commonly used cobaloxime catalysts. The reversible Co(II)/Co(I) process is influenced by the axial N ligand's nature. Imidazole/L-histidine with a higher pKa promptly produces H2 upon irradiation, leading to the improved reactivity compared to previously employed axial (di)chloride or pyridine analogue.

2.
Inorg Chem ; 63(25): 11639-11648, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38865132

RESUMEN

In an effort to break the single-cage 16-vertex supraicosahedral barrier, we have explored the reaction of [Cp*CoCl2], 1 with [LiBH4·THF], followed by thermolysis with [BH3·SMe2] [Cp* = η5-C5Me5]. Although our objective to synthesize a high-nuclearity single-cage cluster was not achieved, we have isolated a 25-vertex macropolyhedral cluster [(Cp*Co)5Co2B18H17(CH3)S] (2). Cluster 2 is an exceptional fused hourglass-shaped macropolyhedral cluster composing two icosahedral cores ([Co3B9] and [Co4B8]) and three tetrahedral cores [Co2B2]. Although the fusion in cluster 2 is very complex, it follows Mingos fusion formalism, leading to an attractive hourglass-shaped cluster. Through subtle changes in reaction conditions, two new cobaltaborane clusters, nido-4,5,7-[(Cp*Co)3B7H11] (3) and nido-2,9-[(Cp*Co)2B8H12] (4), have been isolated. The observed core geometries of clusters 3 and 4 are similar to the parent deltahedra [B10H14] with (n + 2) SEP (SEP = skeletal electron pair, n = no. of vertices). All the synthesized cobaltaboranes have been characterized in solution by ESI-mass, nuclear magnetic resonance spectroscopy, infrared spectroscopy and structurally solved by single-crystal X-ray diffraction analysis.

3.
Inorg Chem ; 62(1): 160-169, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36574500

RESUMEN

Several dihydridoborate group 7 metal complexes have been synthesized and their structural aspects have been described from various N,S-, N,N-, and N,O-chelated borate species, such as Na[(H3B)mp] (mp = 2-mercaptopyridyl), Na[(H3B)amt] (amt = 2-amino-5-mercapto-1,3,4-thiadiazolyl), Na[(H3B)hp] (hp = 2-hydroxypyridyl), Na[(H2B)bap] (bap = bis(2-aminopyridyl)), and Na[(H2B)bdap] (bdap = bis(2,6-diaminopyridyl)). Room temperature photolysis of [M2(CO)10] (M = Mn or Re) with these borate species afforded dihydridoborate complexes [(CO)3M(µ-H)2BHL] 1-6 (1, M = Mn, L = mp; 2, M = Re, L = mp; 3, M = Mn, L = amt; 4, M = Mn, L = hp; 5, M = Mn, L = ap; 6, M = Mn, L = dap, ap = 2-aminopyridyl, dap = 2,6-diaminopyridyl). In complexes 1-3, the corresponding (H2BHL) units are coordinated to the metal centers through the (κ3-H,H,S) mode. However, in complexes 4 and 5 (or 6), the connection is via (κ3-H,H,O) and (κ3-H,H,N) modes of coordination, respectively. Complexes 1 and 5 underwent hydroboration reactions with terminal alkynes that yielded trans-hydroborated species [Mn(CO)3(µ-H)2(NC5H4E)B(PhC═CH2)] (7, E = S; 8, E = NH). Density functional theory (DFT) calculations have been carried out to investigate the electronic structures of these dihydridoborate species as well as the nature of bonding in them.

4.
Chemistry ; 28(18): e202104393, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35171519

RESUMEN

Treatment of [Cp*RuCl2 ]2 , 1, [(COD)IrCl]2 , 2 or [(p-cymene)RuCl2 ]2, 3 (Cp*=η5 -C5 Me5, COD= 1,5-cyclooctadiene and p-cymene=η6 -i PrC6 H4 Me) with heterocyclic borate ligands [Na[(H3 B)L], L1 and L2 (L1 : L=amt, L2 : L=mp; amt=2-amino-5-mercapto-1,3,4-thiadiazole, mp=2-mercaptopyridine) led to the formation of borate complexes having uncommon coordination. For example, complexes 1 and 2 on reaction with L1 and L2 afforded dihydridoborate species [LA M(µ-H)2 BHL] 4-6 (4: LA =Cp*, M=Ru, L=amt; 5: LA =Cp*, M=Ru, L=mp; 6: LA =COD, M=Ir, L=mp). On the other hand, treatment of 3 with L2 yielded cis- and trans-bis(dihydridoborate) species, [Ru{(µ-H)2 BH(mp)}2 ], cis-7 and trans-7. The isolation and structural characterization of fac- and mer-[Ru{(µ-H)2 BH(mp)}{(µ-H)BH(mp)2 }], 8 from the same reaction offered an insight into the behaviour of these dihydridoborate species in solution. Fascinatingly, despite having reduced natural charges on Ru centres both at cis-and trans-7, they underwent hydroboration reaction with alkynes that yielded both Markovnikov and anti-Markovnikov addition products, 10 a-d.


Asunto(s)
Boratos , Ligandos
5.
Inorg Chem ; 61(42): 16750-16759, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36228081

RESUMEN

In an effort to synthesize cobalt-rich metallaheteroboranes from decaborane(14) analogues, we have studied the reaction of 10-vertex nido-[(Cp*Co)2B6H6E2] (Cp* = η5-C5Me5, 1: E = Se and 2: E = Te) with [Co2(CO)8] under thermolytic conditions. All of these reactions yielded face-fused clusters, [(Cp*Co)2B6H6E2{Co(CO)}(µ-CO){Co3(CO)6}] (3: E = Se and 4: E = Te). Further, when clusters 3 and 4 were treated with [Co2(CO)8], they underwent further cluster buildup reactions leading to the formation of 16-vertex doubly face-fused clusters [(Cp*Co)2B6H6E2{Co2(CO)2}(µ-CO)2{Co4(CO)8}] (5: E = Se and 6: E = Te). Cobaltaheteroboranes 3 and 4 comprise one icosahedron {Co4B6E2} and one square pyramidal {Co3B2} moiety, whereas 5 and 6 are made with one icosahedron {Co4B6E2} and two square pyramidal {Co3B2} cores. In an attempt to generate heterometallic metal-rich clusters, we have explored the reactivity of decaborane(14) analogue nido-[(Cp*Co)2B7TeH9] (7) with [Ru3(CO)12] at 80 °C, which afforded face-fused 13-vertex cluster [(Cp*Co)2B7H7Te{Ru3(CO)8}] (8). Cluster 8 is a rare example of a metal-rich metallaheteroborane in which one icosahedron {Co2Ru2B7Te} and a tetrahedron {Ru2B2} units are fused through a common {RuB2} triangular face. Further, the treatment of nido-[(Cp*Co)2B6S2H4(CH2S2)] (9) with [Fe2(CO)9] afforded 11-vertex nido-[(Cp*Co)2B6S2H4(CH2S2){Fe(CO)3}] (10). The core structure of 10 is similar to that of [C2B9H11]2- with a five-membered pentahapto coordinating face. All of the synthesized metal-rich metallaheteroboranes have been characterized by multinuclear nuclear magnetic resonance (NMR) spectroscopy, IR spectroscopy, ESI-MS, and structurally solved by single-crystal X-ray diffraction analysis. Furthermore, theoretical investigations gave insight into the bonding of such higher-nuclearity clusters containing heavier chalcogen atoms.

6.
Inorg Chem ; 60(16): 12367-12376, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34319710

RESUMEN

To establish a procedure for single-cage cluster expansion of open cage dimetallaoctaboranes(12), we have investigated the chemistry of nido-[(Cp*M)2B6H10] (η5-C5Me5 = Cp*, 1: M = Co; 2: M = Rh), with diverse chalcogen-based borate ligands. As a result, treatment of nido-1 and nido-2 with Li[BH2E3] (E = S, Se, or Te) yielded 10-vertex nido-[(Cp*Co)2B7EH9] (3: E = S; 4: E = Se; 5: E = Te) along with known 10-vertex nido-[(Cp*M)2B6H6E2] (6: E = S, M = Co; 7: E = Se, M = Co; 8: E = Te, M = Co; 9: E = Se, M = Rh). The geometries of dimetallachalcogenaboranes, 3-9, are isostructural with decaborane(14). Thermolysis of nido-1 and nido-2 with an intermediate, generated from CS2 and [LiBH4]·THF reaction in THF, produced nido-[(Cp*M)2B6S2H4(CH2S2)] (10: M = Co; 11: M = Rh) and nido-[(Cp*M)2B6S2H4(CS3)] (12: M = Co; 13: M= Rh). Clusters 10-13 are rare species in which one of the B-B bonds is coordinated with a {CS2}2- or {CS3}2- ligand, generating di(thioborolane) {B2S2CH2} or di(thioboralane)-thione {B2CS3} moieties. To examine further the coordination chemistry of CS2-bridged decaborane(14) analogue nido-10, photolysis was carried out with {M(CO)5·THF} (M = Mo or W) that led to the isolation of [(Cp*Co)2B6S2H4(CH2S2){M(CO)5}] (14: M = Mo; 15: M = W), where the {CH2S2} moiety is coordinated with one {M(CO)5} moiety in η1-fashion. All the synthesized clusters have been characterized by ESI-mass, multinuclear NMR spectroscopy, and IR spectroscopy and structurally solved by single-crystal XRD. Furthermore, DFT calculations probe the bonding of these CS2- and CS3-bridged decaborane analogues.

7.
Inorg Chem ; 59(6): 3537-3541, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32125834

RESUMEN

The reactions of dimetallaoctaboranes(12) [(Cp*M)2B6H10] [M = Co (1) or Rh (2); Cp* = η5-C5Me5] with different chalcogen sources, such as Li[BH2E3] and Li[BH3EPh] (E = S, Se, or Te), led to two unique reaction outcomes. For example, the formation of 10-vertex nido-[(Cp*M)2B6E2H6] (3, M = Co, E = S; 4, M = Co, E = Se; 5, M = Co, E = Te; 6, M = Rh, E = Se) from compounds 1 and 2 is a typical representation of a cluster growth reaction, while the formation of arachno-[(Cp*Co)2B6H9(EPh)] [E = S (9), Se (10), or Te (11)] is a rare method that yielded arachno clusters, keeping the core geometry identical. The formation of arachno-9-11 is a unique method that converts disobedient cluster 1 to obedient clusters 9-11. Further, the reactivity of nido-4 with various metal carbonyls presented sequential cluster growth reactions, which afforded 11-vertex nido-[(Cp*Co)2B6Se2H6{Fe(CO)3}] (7) and 13-vertex fused closo-[(Cp*Co)2B6Se2H6{Ru3(CO)8}] (8). The core geometry of nido-7 is uncommon and very similar to that of [C2B9H11]2- with a unique open pentahapto-coordinating five-membered face.

8.
Inorg Chem ; 58(1): 47-51, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30525519

RESUMEN

In an effort to isolate the 16-vertex supraicosahedral cobaltaborane [(Cp*Co)3B12H12Co{Cp*CoB4H9}] (Cp* = η5-C5Me5), we have pyrolyzed an in situ generated intermediate, obtained from the fast metathesis of [Cp*CoCl]2 and [LiBH4·THF], with an excess amount of [BH3·THF]. Although the objective of isolating the 16-vertex cobalt analogue was not achieved, the reaction yielded a closo-19-vertex face-fused cluster presenting icosahedral {Co3B9}, tetrahedral {B4}, and 10-vertex {CoB9} units. The reaction also yielded a 20-vertex face-fused cluster that contains icosahedral {Co4B8}, square-pyramidal {CoB4}, tetrahedral {Co2B2}, and nido-{CoB7} units.

9.
Curr Res Struct Biol ; 7: 100113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292821

RESUMEN

THAP9 is a transposable element-derived gene that encodes the THAP9 protein, which is homologous to the Drosophila P-element transposase (DmTNP) and can cut and paste DNA. However, the exact functional role of THAP9 is unknown. Here, we perform structure prediction, evolutionary analysis and extensive in silico characterization of THAP9, including predicting domains and putative post-translational modification sites. Comparison of the AlphaFold-predicted structure of THAP9 with the DmTNP CryoEM structure, provided insights about the C2CH motif and other DNA binding residues, RNase H-like catalytic domain and insertion domain of the THAP9 protein. We also predicted previously unreported mammalian-specific post-translational modification sites that may play a role in the subcellular localization of THAP9. Furthermore, we observed that there are distinct organism class-specific conservation patterns of key functional residues in certain THAP9 domains.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda