Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Infect Dis ; 225(9): 1621-1625, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34453537

RESUMEN

We adapted the RNA FISH Stellaris method to specifically detect the expression of Plasmodium genes by flow cytometry and ImageStream (Flow-FISH). This new method accurately quantified the erythrocytic forms of (1) Plasmodium falciparum and Plasmodium vivax and (2) the sexual stages of P vivax from patient isolates. ImageStream analysis of liver stage sporozoites using a combination of surface circumsporozoite protein (CSP), deoxyribonucleic acid, and 18S RNA labeling proved that the new Flow-FISH is suitable for gene expression studies of transmission stages. This powerful multiparametric single-cell method offers a platform of choice for both applied and fundamental research on the biology of malaria parasites.


Asunto(s)
Malaria , Esporozoítos , Animales , Expresión Génica , Humanos , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , ARN
2.
J Antimicrob Chemother ; 76(10): 2565-2568, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34245274

RESUMEN

BACKGROUND: Expanding resistance to multiple antimalarials, including chloroquine, in South-East Asia (SEA) urges the development of new therapies. AQ-13, a chloroquine derivative, is a new drug candidate for treating malaria caused by Plasmodium falciparum. OBJECTIVES: Possible cross-resistance between the 4-aminoquinolines amodiaquine, piperaquine and AQ-13 has not been assessed. In vitro parasite growth assays were used to characterize the susceptibility of multidrug-resistant and susceptible P. falciparum patient isolates to AQ-13. METHODS: A [3H]hypoxanthine uptake assay and a 384-well high content imaging assay were used to assess efficacy of AQ-13 and desethyl-amodiaquine against 38 P. falciparum isolates. RESULTS: We observed a strong cross-resistance between the chloroquine derivative amodiaquine and AQ-13 in Cambodian P. falciparum isolates (Pearson correlation coefficient of 0.8621, P < 0.0001). CONCLUSIONS: In light of the poor efficacy of amodiaquine that we described recently in Cambodia, and its cross resistance with AQ-13, there is a significant risk that similar clinical efficacy of AQ-13-based combinations should be anticipated in areas of amodiaquine resistance.


Asunto(s)
Antimaláricos , Malaria Falciparum , Amodiaquina/farmacología , Amodiaquina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Pueblo Asiatico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos , Humanos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum
3.
J Antimicrob Chemother ; 74(11): 3240-3244, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518407

RESUMEN

BACKGROUND: Cambodia is the epicentre of resistance emergence for virtually all antimalarial drugs. Selection and spread of parasites resistant to artemisinin-based combination therapy (ACT) is a major threat for malaria elimination, hence the need to renew the pool of effective treatments. OBJECTIVES: To determine whether ACT resistance haplotypes could have an effect on ferroquine in vitro antimalarial activity. METHODS: In vitro susceptibility to ferroquine was measured for 80 isolates from Cambodia characterized for their molecular resistance profile to artemisinin, piperaquine and mefloquine. RESULTS: Among the 80 isolates tested, the overall median (IQR) IC50 of ferroquine was 10.9 nM (8.7-18.3). The ferroquine median (IQR) IC50 was 8.9 nM (8.1-11.8) for Pfk13 WT parasites and was 12.9 nM (9.5-20.0) for Pfk13 C580Y parasites with no amplification of Pfpm2 and Pfmdr1 genes. The median (IQR) IC50 of ferroquine for Pfk13 C580Y parasites with amplification of the Pfpm2 gene was 17.2 nM (14.5-20.5) versus 9.1 nM (7.9-10.7) for Pfk13 C580Y parasites with amplification of the Pfmdr1 gene. CONCLUSIONS: Ferroquine exerts promising efficacy against ACT-resistant isolates. Whereas Pfpm2 amplification was associated with the highest parasite tolerance to ferroquine, the susceptibility range observed was in accordance with those measured in ACT resistance-free areas. This enables consideration of ferroquine as a relevant therapeutic option against ACT-resistant malaria.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Compuestos Ferrosos/farmacología , Metalocenos/farmacología , Plasmodium falciparum/efectos de los fármacos , Cambodia , Quimioterapia Combinada , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/parasitología , Pruebas de Sensibilidad Parasitaria
4.
ACS Infect Dis ; 10(6): 2276-2287, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38810215

RESUMEN

Our previous work identified a series of 12 xanthoquinodin analogues and 2 emodin-dianthrones with broad-spectrum activities against Trichomonas vaginalis, Mycoplasma genitalium, Cryptosporidium parvum, and Plasmodium falciparum. Analyses conducted in this study revealed that the most active analogue, xanthoquinodin A1, also inhibits Toxoplasma gondii tachyzoites and the liver stage of Plasmodium berghei, with no cross-resistance to the known antimalarial targets PfACS, PfCARL, PfPI4K, or DHODH. In Plasmodium, inhibition occurs prior to multinucleation and induces parasite death following 12 h of compound exposure. This moderately fast activity has impeded resistance line generation, with xanthoquinodin A1 demonstrating an irresistible phenotype in both T. gondii and P. falciparum.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Plasmodium berghei , Plasmodium falciparum , Toxoplasma , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Toxoplasma/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Animales , Antraquinonas/farmacología , Antraquinonas/química , Humanos
5.
J Med Chem ; 67(2): 1460-1480, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38214254

RESUMEN

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.


Asunto(s)
Antimaláricos , Malaria , Receptor EphA2 , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Relación Estructura-Actividad , África , Plasmodium falciparum
6.
ACS Infect Dis ; 9(6): 1257-1266, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37216290

RESUMEN

Malaria drug resistance is hampering the fight against the deadliest parasitic disease affecting over 200 million people worldwide. We recently developed quinoline-quinazoline-based inhibitors (as compound 70) as promising new antimalarials. Here, we aimed to investigate their mode of action by using thermal proteome profiling (TPP). The eukaryotic translation initiation factor 3 (EIF3i) subunit I was identified as the main target protein stabilized by compound 70 in Plasmodium falciparum. This protein has never been characterized in malaria parasites. P. falciparum parasite lines were generated expressing either a HA tag or an inducible knockdown of the PfEIF3i gene to further characterize the target protein. PfEIF3i was stabilized in the presence of compound 70 in a cellular thermal shift Western blot assay, pointing that PfEIF3i indeed interacts with quinoline-quinazoline-based inhibitors. In addition, PfEIF3i-inducible knockdown blocks intra-erythrocytic development in the trophozoite stage, indicating that it has a vital function. We show that PfEIF3i is mostly expressed in late intra-erythrocytic stages and localizes in the cytoplasm. Previous mass spectrometry reports show that PfEIF3i is expressed in all parasite life cycle stages. Further studies will explore the potential of PfEIF3i as a target for the design of new antimalarial drugs active all along the life cycle of the parasite.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Quinolinas , Humanos , Animales , Plasmodium falciparum/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , Quinazolinas/farmacología , Malaria Falciparum/parasitología , Antimaláricos/farmacología , Antimaláricos/química , Quinolinas/farmacología , Estadios del Ciclo de Vida
7.
iScience ; 26(2): 105940, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36718363

RESUMEN

Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.

8.
Curr Opin Microbiol ; 70: 102207, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36183663

RESUMEN

A commonly observed survival strategy in protozoan parasites is the sequential expression of clonally variant-surface antigens to avoid elimination by the host's immune response. In malaria-causing P. falciparum, the immunovariant erythrocyte-membrane protein-1 (PfEMP1) adhesin family, encoded by var genes, is responsible for both antigenic variation and cytoadherence of infected erythrocytes to the microvasculature. Until recently, the biological function of these variant genes was believed to be restricted to intraerythrocytic developmental stages. With the advent of new technologies, var gene expression has been confirmed in transmission and pre-erythrocytic stages. Here, we discuss how repurposing of var gene expression beyond chronic blood-stage infection may be critical for successful transmission.


Asunto(s)
Antígenos de Protozoos , Malaria Falciparum , Plasmodium falciparum , Humanos , Variación Antigénica , Antígenos de Protozoos/genética , Eritrocitos/parasitología , Genes Protozoarios , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
9.
Nat Commun ; 13(1): 4123, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840625

RESUMEN

Plasmodium vivax is the most widespread human malaria parasite. Due to the presence of extravascular reservoirs and relapsing infections from dormant liver stages, P. vivax is particularly difficult to control and eliminate. Experimental research is hampered by the inability to maintain P. vivax cultures in vitro, due to its tropism for immature red blood cells (RBCs). Here, we describe a new humanized mice model that can support efficient human erythropoiesis and maintain long-lasting multiplication of inoculated cryopreserved P. vivax parasites and their sexual differentiation, including in bone marrow. Mature gametocytes were transmitted to Anopheles mosquitoes, which led to the formation of salivary gland sporozoites. Importantly, blood-stage P. vivax parasites were maintained after the secondary transfer of fresh or frozen infected bone marrow cells to naïve chimeras. This model provides a unique tool for investigating, in vivo, the biology of intraerythrocytic P. vivax.


Asunto(s)
Anopheles , Malaria Vivax , Animales , Anopheles/parasitología , Humanos , Malaria Vivax/parasitología , Ratones , Recurrencia Local de Neoplasia , Plasmodium vivax , Esporozoítos
10.
mBio ; 12(6): e0255821, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34724812

RESUMEN

Malaria parasites need to cope with changing environmental conditions that require strong countermeasures to ensure pathogen survival in the human and mosquito hosts. The molecular mechanisms that protect Plasmodium falciparum homeostasis during the complex life cycle remain unknown. Here, we identify cytosine methylation of tRNAAsp (GTC) as being critical to maintain stable protein synthesis. Using conditional knockout (KO) of a member of the DNA methyltransferase family, called Pf-DNMT2, RNA bisulfite sequencing demonstrated the selective cytosine methylation of this enzyme of tRNAAsp (GTC) at position C38. Although no growth defect on parasite proliferation was observed, Pf-DNMT2KO parasites showed a selective downregulation of proteins with a GAC codon bias. This resulted in a significant shift in parasite metabolism, priming KO parasites for being more sensitive to various types of stress. Importantly, nutritional stress made tRNAAsp (GTC) sensitive to cleavage by an unknown nuclease and increased gametocyte production (>6-fold). Our study uncovers an epitranscriptomic mechanism that safeguards protein translation and homeostasis of sexual commitment in malaria parasites. IMPORTANCE P. falciparum is the most virulent malaria parasite species, accounting for the majority of the disease mortality and morbidity. Understanding how this pathogen is able to adapt to different cellular and environmental stressors during its complex life cycle is crucial in order to develop new strategies to tackle the disease. In this study, we identified the writer of a specific tRNA cytosine methylation site as a new layer of epitranscriptomic regulation in malaria parasites that regulates the translation of a subset of parasite proteins (>400) involved in different metabolic pathways. Our findings give insight into a novel molecular mechanism that regulates P. falciparum response to drug treatment and sexual commitment.


Asunto(s)
Citosina/metabolismo , Metiltransferasas/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , ARN Protozoario/genética , ARN de Transferencia/genética , Metilación de ADN , Epigenoma , Humanos , Malaria Falciparum/parasitología , Metiltransferasas/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/genética , Procesamiento Postranscripcional del ARN , ARN Protozoario/metabolismo , ARN de Transferencia/metabolismo , Estrés Fisiológico
11.
J Med Chem ; 64(14): 10403-10417, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34185525

RESUMEN

Epigenetic post-translational modifications are essential for human malaria parasite survival and progression through its life cycle. Here, we present new functionalized suberoylanilide hydroxamic acid (SAHA) derivatives that chemically combine the pan-histone deacetylase inhibitor SAHA with the DNA methyltransferase inhibitor procainamide. A three- or four-step chemical synthesis was designed starting from cheap raw materials. Compared to the single drugs, the combined molecules showed a superior activity in Plasmodium and a potent inhibition against human HDAC6, exerting no cytotoxicity in human cell lines. These new compounds are fully active in multidrug-resistant Plasmodium falciparum Cambodian isolates. They target transmission of the parasite by inducing irreversible morphological changes in gametocytes and inhibiting exflagellation. The compounds are slow-acting and have an additive antimalarial effect in combination with fast-acting epidrugs and dihydroartemisinin. The lead compound decreases parasitemia in mice in a severe malaria model. Taken together, this novel fused molecule offers an affordable alternative to current failing antimalarial therapy.


Asunto(s)
Antimaláricos/farmacología , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Procainamida/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Ácidos Hidroxámicos/química , Estructura Molecular , Procainamida/química , Relación Estructura-Actividad
12.
ACS Cent Sci ; 6(1): 16-21, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31989022

RESUMEN

Malaria is the deadliest parasitic disease affecting over 200 million people worldwide. The increasing number of treatment failures due to multi-drug-resistant parasites in South-East Asia hinders the efforts for elimination. It is thus urgent to develop new antimalarials to contain these resistant parasites. Based on a previous report showing the presence of DNA methylation in Plasmodium, we generated new types of DNA methylation inhibitors against malaria parasites. The quinoline-quinazoline-based inhibitors kill parasites, including artemisinin-resistant field isolates adapted to culture, in the low nanomolar range. The compounds target all stages of the asexual cycle, including early rings, during a 6 h treatment period; they reduce DNA methylation in the parasite and show in vivo activity at 10 mg/kg. These potent inhibitors are a new starting point to develop fast-acting antimalarials that could be used in combination with artemisinins.

13.
ACS Infect Dis ; 4(4): 523-530, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29377668

RESUMEN

Diaminoquinazolines represent a privileged scaffold for antimalarial discovery, including use as putative Plasmodium histone lysine methyltransferase inhibitors. Despite this, robust evidence for their molecular targets is lacking. Here we report the design and development of a small-molecule photo-cross-linkable probe to investigate the targets of our diaminoquinazoline series. We demonstrate the effectiveness of our designed probe for photoaffinity labeling of Plasmodium lysates and identify similarities between the target profiles of the probe and the representative diaminoquinazoline BIX-01294. Initial pull-down proteomics experiments identified 104 proteins from different classes, many of which are essential, highlighting the suitability of the developed probe as a valuable tool for target identification in Plasmodium falciparum.


Asunto(s)
Antimaláricos/farmacología , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/metabolismo , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/efectos de los fármacos , Unión Proteica
14.
Arch Pharm Res ; 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27461028

RESUMEN

Phytochemical investigation of the methanol extract of Cyphostemma adenocaule liana (bark and wood) led to the isolation of two new ceanothane-type triterpenoids, cyphostemmic acid A 1 and cyphostemmic acid B 2, together with the known triterpenoids 3-7, ß-sitosterol and its glucoside. The structures of the isolated compounds were established by 1D- and 2D-NMR spectroscopy. Ozonolysis of cyphostemmic acid A 1, epigouanic acid A 3 and betulin 6 yielded semisynthetic derivatives, cyphostemmic acid C 8, cyphostemmic acid D 9, and 3ß,28-dihydroxy-30-norlupan-20-one 10 respectively. Compounds 1-4, 6, 8-10 were tested in vitro, for their antiplasmodial activity against Plasmodium falciparum 3D7 strain and showed weak activity.

15.
Int J Pharm ; 499(1-2): 343-350, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26772534

RESUMEN

In France, chemotherapy preparation units of hospital pharmacy compound cytotoxic infusion bags adapted to each patient. The narrow therapeutic index of these preparations led us to implement qualitative and quantitative control for patients' safety. To this aim, we calibrated an equipment combining UV-vis spectrometry and Raman spectroscopy (QC Prep+) and monitored 14 different molecule-solvent combinations over a 18 months period. This rapid and specific method allowed the qualitative and quantitative analysis of 1 mL sample tests in less than 2 min. On 5742 anticancer preparations, we obtained accepted results with more than 99.4% solvent identification, 99.6% drug identification and only 1.52% of preparations not matching quantitative specifications (±15% of theoretical concentration). This quantitative control enabled us to pinpoint some critical points of production for two of the most common preparations. We thus updated the procedures of reconstitution and preparation, increasing the quality of final product. UV-Raman spectrometry is thus an effective tool to control chemotherapy infusions and to improve good practices of preparation.


Asunto(s)
Antineoplásicos/análisis , Solventes/química , Espectrofotometría Ultravioleta/métodos , Espectrometría Raman/métodos , Antineoplásicos/normas , Calibración , Composición de Medicamentos/métodos , Francia , Humanos , Servicio de Farmacia en Hospital , Control de Calidad , Factores de Tiempo
16.
J Ethnopharmacol ; 187: 241-8, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27132714

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Psidium acutangulum Mart. ex DC is a small tree used by the Wayana Amerindians from the Upper-Maroni in French Guiana for the treatment of malaria. AIM OF THE STUDY: In a previous study, we highlighted the in vitro antiplasmodial, antioxidant and anti-inflammatory potential of the traditional decoction of P. acutangulum aerial parts. Our goal was then to investigate on the origin of the biological activity of the traditional remedy, and eventually characterize active constituents. MATERIALS AND METHODS: Liquid-liquid extractions were performed on the decoction, and the antiplasmodial activity evaluated against chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains, and on a chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. The ethyl acetate fraction (D) was active and underwent bioguided fractionation. All the isolated compounds were tested on P. falciparum FcB1 strain. In vitro anti-inflammatory activity (IL-1ß, IL-6, IL-8, TNFα) of the ethyl acetate fraction and of an anti-Plasmodium active compound, was concurrently assessed on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the fractions and pure compounds was measured on VERO cells, L6 mammalian cells, PBMCs, and RAW cells. RESULTS: Fractionation of the ethyl acetate soluble fraction (IC50 ranging from 3.4 to <1µg/mL depending on the parasite strain) led to the isolation of six pure compounds: catechin and five glycosylated quercetin derivatives. These compounds have never been isolated from this plant species. Two of these compounds (wayanin and guaijaverin) were found to be moderately active against P. falciparum FcB1 in vitro (IC50 5.5 and 6.9µM respectively). We proposed the name wayanin during public meetings organized in June 2015 in the Upper-Maroni villages, in homage to the medicinal knowledge of the Wayana population. At 50µg/mL, the ethyl acetate fraction (D) significantly inhibited IL-1ß secretion (-46%) and NO production (-21%), as previously observed for the decoction. The effects of D and guiajaverin (4) on the secretion of other cytokines or NO production were not significant. CONCLUSIONS: The confirmed antiplasmodial activity of the ethyl acetate soluble fraction of the decoction and of the isolated compounds support the previous results obtained on the P. acutangulum decoction. The antiplasmodial activity might be due to a mixture of moderately active non-toxic flavonoids. The anti-inflammatory activities were less marked for ethyl acetate fraction (D) than for the decoction.


Asunto(s)
Antiinflamatorios/farmacología , Antimaláricos/farmacología , Flavonoides/farmacología , Extractos Vegetales/farmacología , Psidium , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Citocinas/metabolismo , Guyana Francesa , Frutas , Humanos , Indígenas Sudamericanos , Leucocitos Mononucleares/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Hojas de la Planta , Tallos de la Planta , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Células RAW 264.7 , Ratas , Células Vero
17.
J Ethnopharmacol ; 166: 279-85, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25792015

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Field investigations highlighted the use of Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh), a small tree used by the Wayana Amerindians in Twenke-Taluhwen and Antecume-Pata, French Guiana, for the treatment of malaria, and administered either orally in the form of a decoction or applied externally over the whole body. This use appears limited to the Wayana cultural group in French Guiana and has never been reported anywhere else. Our goal was to evaluate the antimalarial and anti-inflammatory activities of a P. acutangulum decoction to explain the good reputation of this remedy. MATERIALS AND METHODS: Interviews with the Wayana inhabitants of Twenke-Taluhwen and Antecume-Pata were conducted within the TRAMAZ project according to the TRAMIL methodology, which is based on a quantitative and qualitative analysis of medicinal plant uses. A decoction of dried aerial parts of P. acutangulum was prepared in consistency with the Wayana recipe. In vitro antiplasmodial assays were performed on chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains and on chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. In vitro anti-inflammatory activity (IL-1ß, IL-6, IL-8, TNFα) was evaluated on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the decoction was measured on L6 mammalian cells, PBMCs, and RAW cells. A preliminary evaluation of the in vivo antimalarial activity of the decoction, administered orally twice daily, was assessed by the classical four-day suppressive test against P. berghei NK65 in mice. RESULTS: The decoction displayed a good antiplasmodial activity in vitro against the three tested strains, regardless to the bioassay used, with IC50 values of 3.3µg/mL and 10.3µg/mL against P. falciparum FcB1 and NF54, respectively and 19.0µg/mL against P. falciparum 7G8. It also exhibited significant anti-inflammatory activity in vitro in a dose dependent manner. At a concentration of 50µg/mL, the decoction inhibited the secretion of the following pro-inflammatory cytokines: TNFα (-18%), IL-1ß (-58%), IL-6 (-32%), IL-8 (-21%). It also exhibited a mild NO secretion inhibition (-13%) at the same concentration. The decoction was non-cytotoxic against L6 cells (IC50>100µg/mL), RAW cells and PBMC. In vivo, 150µL of the decoction given orally twice a day (equivalent to 350mg/kg/day of dried extract) inhibited 39.7% average parasite growth, with more than 50% of inhibition in three mice over five. The absence of response for the two remaining mice, however, induced a strong standard deviation. CONCLUSIONS: This study highlighted the in vitro antiplasmodial activity of the decoction of P. acutangulum aerial parts, used by Wayana Amerindians from the Upper-Maroni in French Guiana in case of malaria. Its antioxidant and anti-inflammatory potential, which may help to explain its use against this disease, was demonstrated using models of artificially stimulated cells.


Asunto(s)
Antiinflamatorios/farmacología , Antimaláricos/farmacología , Antiprotozoarios/farmacología , Myrtaceae/química , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Psidium/química , Animales , Antiinflamatorios/química , Antiprotozoarios/química , Línea Celular , Cloroquina/farmacología , Etnofarmacología/métodos , Guyana Francesa , Humanos , Interleucinas/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Ratones , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Plantas Medicinales/química , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda